Skip to main content

Advertisement

Log in

Improvement of cadmium ion electrochemical removal from dilute aqueous solutions by application of multi-stage electrolysis

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Improvement of cadmium ion electrochemical removal from dilute aqueous solutions in a spouted bed reactor was investigated. Enlargement of cathode surface area from 1,000 to 1,500 cm2 resulted in a decrease of nearly 30 % in both of the process time and the specific energy consumption. Application of a three-stage electrolysis process for a solution containing initial concentration of 270 ppm cadmium ion, resulted in the removal of 99.9 % cadmium ion in 135 min with the specific energy consumption of 2.29 kWh/kg, 23 % less than the value of a single-stage process. For a solution with cadmium ion initial concentration of 180 ppm, 99.9 % of cadmium ion was removed in 135.5 min by application of a two-stage electrolysis process, while the specific energy consumption was 2.82 kWh/kg, 30 % less than that of a single-stage process. For a solution with cadmium ion initial concentration of 90 ppm, 99.5 % of cadmium ion was removed in 100.2 min with the specific energy consumption of 3.78 kWh/kg in a single-stage electrolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Salam A (2013) Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: kinetic and thermodynamic studies. Int J Environ Sci Technol 10(4):677–688. doi:10.1007/s13762-012-0127-6

    CAS  Google Scholar 

  • Amin MLE (2011) Advanced topics in mass transfer. Intech Publisher, Croatia

  • Baghban E, Mehrabani-Zeinabad A (2012) Optimization of draft tube position in a spouted bed reactor using response surface methodology. Adv Mater Phys Chem 2:232–235. doi:10.4236/ampc.2012.24B059

    Article  Google Scholar 

  • Dutra AJB, Rocha GP, Pombo FR (2008) Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte. J Hazard Mater 152:648–652. doi:10.1016/j.jhazmat.2007.07.030

    CAS  Google Scholar 

  • Fu F, Xie L, Tang B, Wang Q, Jiang S (2012) Application of a novel strategy—Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem Eng J 189–190:283–287. doi:10.1016/j.cej.2012.02.073

    Google Scholar 

  • Grimshaw P, Calo JM, Shirvanian PA, Hradidil G (2011) II. Electrodeposition/removal of nickel in a spouted electrochemical reactor. Indian Eng Chem Res 50:9525–9531. doi:10.1021/ie200669b

    CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342(2):533–539. doi:10.1016/j.jcis.2009.10.074

    CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185(1):17–23. doi:10.1016/j.jhazmat.2010.08.053

    CAS  Google Scholar 

  • Hofman M, Pietrzak R (2013) Copper ions removal from liquid phase by polyethersulfone (PES) membranes functionalized by introduction of carbonaceous materials. Chem Eng J 215–216:216–221

    Google Scholar 

  • Hwang HG, Chun HS (1999) Enhancement of mass transfer in the fluidized bed electrode reactors. Korean J Chem Eng 16:843–847. doi:10.1007/BF02698363

    CAS  Google Scholar 

  • Ismail I, Soliman A, Abdel-Monem N, Salah Ahmed H, Sorour M H (2013) Nickel removal from electroplating waste water using stand-alone and electrically assisted ion exchange processes. Int J Environ Sci Technol (Available online: February 2013). doi: 10.1007/s13762-012-0158-z

  • Jiricny V, Roy A, Evans JW (2002a) Copper electrowinning using spouted-bed electrodes: part I. Experiments with oxygen evolution or matte oxidation at the anode. Metall Mater Trans 33B:669–676. doi:10.1007/s11663-002-0019-0

    CAS  Google Scholar 

  • Jiricny V, Roy A, Evans JW (2002b) Copper electrowinning using spouted-bed electrodes: part II. Copper electrowinning with ferrous ion oxidation as the anodic reaction. Metall Mater Trans 33B:677–683. doi:10.1007/s11663-002-0020-7

    CAS  Google Scholar 

  • Kaminari NMS, Schultz DR, Ponte MJJS, Ponte HA, Marino CEB, Neto AC (2007) Heavy metals recovery from industrial wastewater using Taguchi method. Chem Eng J 126:139–146. doi:10.1016/j.cej.2006.08.024

    CAS  Google Scholar 

  • Körbahti BK, Artut K, Geçgel C, Özer A (2011) Electrochemical recovery of nickel and cadmium from spent Ni–Cd batteries. Chem Eng J 173:677–689. doi:10.1016/j.cej.2011.02.018

    Google Scholar 

  • Liu YX, Yan JM, Yuan DX, Li QL, Wu XY (2013) The study of lead removal from aqueous solution using an electrochemical method with a stainless steel net electrode coated with single wall carbon nanotubes. Chem Eng J 218:81–88. doi:10.1016/j.cej.2012.12.020

    CAS  Google Scholar 

  • Makibar J, Fernandez-Akarregi AR, Dĭaz L, Lopez G, Olazar M (2012) Pilot scale conical spouted bed pyrolysis reactor: draft tube selection and hydrodynamic performance. Powder Technol 219:49–58. doi:10.1016/j.powtec.2011.12.008

    CAS  Google Scholar 

  • Melnyk L, Goncharuk V (2009) Electrodialysis of solutions containing Mn(II) ions. Desalination 241(1–3):49–56. doi:10.1016/j.desal.2007.11.082

    CAS  Google Scholar 

  • Naggar IME, Zakaria ES, Ali IM, Khalil M, Shahat MFE (2012) Chemical studies on polyaniline titanotungstate and its uses to reduction cesium from solutions and polluted milk. J Environ Radio 112:108–117. doi:10.1016/j.jenvrad.2012.05.012

    Google Scholar 

  • Ossman ME, Mansour MS (2013) Removal of Cd(II) ion from wastewater by adsorption onto treated old newspaper: kinetic modeling and isotherm studies. Int J Ind Chem 4(13). doi:10.1186/2228-5547-4-13

  • Pak D, Chung D, Ju JB (2001) Design parameters for an electrochemical cell with porous electrode to treat metal ion solution. Water Res 35:57–68

    CAS  Google Scholar 

  • Panizza M, Kapalka A, Comninellis C (2008) Oxidation of organic pollutants on BDD anodes using modulated current electrolysis. Electrochim Acta 53:2289–2295. doi:10.1016/j.electacta.2007.09.044

    CAS  Google Scholar 

  • Rana P, Mohan N, Rajagopal C (2004) Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res 38(12):2811–2820. doi:10.1016/j.watres.2004.02.029

    CAS  Google Scholar 

  • Salas-Morales JC, Evans JW, Newman OMG, Adcock PA (1997) Spouted bed electrowinning of zinc: part I. Laboratory-scale electrowinning experiments. Metall Mater Trans 28B:59–68. doi:10.1007/s11663-997-0127-y

    CAS  Google Scholar 

  • Scott K (1995) Electrochemical process for clean technology. The Royal Society of Chemistry, UK

    Google Scholar 

  • Segundo JEDV, Salazar-Banda GR, Feitoza ACO, Vilar FV, Cavalcanti EB (2012) Cadmium and lead removal from aqueous synthetic wastes utilizing Chemelec electrochemical reactor: study of the operating conditions. Sep Purif Technol 88(22):107–115. doi:10.1016/j.seppur.2011.12.023

    CAS  Google Scholar 

  • Shirvanian PA, Calo JMC (2005) Copper recovery in a spouted vessel electrolytic reactor (SBER). J Appl Electrochem 35:101–111. doi:10.1007/s10800-004-4062-1

    CAS  Google Scholar 

  • Shirvanian PA, Calo JMC, Hradil G (2006) Numerical simulation of fluid–particle hydrodynamics in a rectangular spouted vessel. Int J Multiph Flow 32:739–753. doi:10.1016/j.ijmultiphaseflow.2006.02.009

    CAS  Google Scholar 

  • Shvab NA, Stefanjac NV, Kazdobin KA, Wragg AA (2000a) Mass transfer in fluidized beds of inert particles. Part I: the role of collision currents in mass transfer to the electrode. J Appl Electrochem 30:1285–1292. doi:10.1023/A:1026544808856

    CAS  Google Scholar 

  • Shvab NA, Stefanjac NV, Kazdobin KA, Wragg AA (2000b) Mass transfer in fluidized beds of inert particles Part II: effect of particle size and density. J Appl Electrochem 30:1293–1298. doi:10.1023/A:1026501728450

    CAS  Google Scholar 

  • Singh J, Ali A, Prakash V (2013) Removal of lead (II) from synthetic and batteries wastewater using agricultural residues in batch/column mode. Int J Environ Sci Technol. doi:10.1007/s13762-013-0326-9.e

    Google Scholar 

  • Su YB, Li QB, Wang YP, Wang HT, Huang JL, Yang X (2009) Electrochemical reclamation of silver from silver-plating wastewater using static cylinder electrodes and a pulsed electric field. J Hazard Mater 170(2–3):1164–1172. doi:10.1016/j.jhazmat.2009.05.096

    CAS  Google Scholar 

  • Vatistas N, Bartolozzi M (1990) A three-dimensional current feeder for fluidized bed electrodes. J Appl Electrochem 20:951–954. doi:10.1007/BF01019570

    CAS  Google Scholar 

  • Verma A, Salas-Morales AJC, Evans JW (1997) Spouted bed electrowinning of zinc: part II. Investigations of the dynamics of particles in large thin spouted beds. Metall Mater Trans 28B:69–79. doi:10.1007/S11663-997-0128-x

    CAS  Google Scholar 

  • Yen SC, Yao CY (1991) Enhanced metal recovery in fluidized bed electrodes with a fin-type current feeder. J Electrochem Soc 138:2344–2348. doi:10.1149/1.2085973

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Esfahan Regional Electric Company (EREC) for the financial assistance of 5,000$.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mehrabani-Zeinabad.

List of symbols

A

Area of electrode (m2)

C

Reactant concentration in the bulk solution (mol/m3)

C s

Reactant concentration on electrode surface (mol/m3)

C cr

Critical reactant concentration (mol/m3)

CE

Current efficiency or current yield (%)

E cell

Cell voltage (V)

F

Faraday constant (C/g equiv)

i

Electrical current (A)

i lim

Limiting current (A)

ICE

Instantaneous current efficiency (%)

k c

Correction factor (–)

k m

Mass transfer coefficient (m/min)

\( k_{\text{m}}^{{\prime }} \)

Corrected mass transfer coefficient (m/min)

k r

Reaction rate constant (m/min)

m

Moles of deposited metals (moles)

M

Molecular mass (kg/moles)

n

Number of electrons (–)

q

Total amount of charges passed (C)

SEC

Specific energy consumption (kWh/kg)

t

Time (min)

t cr

Critical time (min)

t t

Transient time (min)

T

Total time (min)

V

Electrolyte volume (m3)

X

Conversion percent (%)

X cr

Critical conversion percent (%)

α

The ratio of applied to initial limiting current (–)

ν

Stoichiometric coefficient (–)

τ

The time of specified conversion (min)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baghban, E., Mehrabani-Zeinabad, A. & Moheb, A. Improvement of cadmium ion electrochemical removal from dilute aqueous solutions by application of multi-stage electrolysis. Int. J. Environ. Sci. Technol. 11, 1591–1600 (2014). https://doi.org/10.1007/s13762-014-0579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0579-y

Keywords

Navigation