Skip to main content
Log in

Influence of hydraulic retention time on heterotrophic biomass in a wastewater moving bed membrane bioreactor treatment plant

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Wastewater treatment using moving bed membrane bioreactor technology was tested with real urban wastewater at a pilot plant, combining moving bed treatment as a biological process with hybrid biomass (suspended and fixed) and the advantages of a membrane separation system. The evolution of the kinetic constants of the hybrid biomass and organic matter removal were studied in a pilot plant under different operational conditions, by varying hydraulic retention time (HRT), mixed liquor suspended solids (MLSS) and temperature, and considering the attached biomass of the carrier and the dispersed biomass of the flocs to reproduce real treatment conditions. The rates of organic matter removal were 97.73 ± 0.81 % of biochemical oxygen demand (BOD5), 93.44 ± 2.13 % of chemical oxygen demand (COD), 94.41 ± 2.26 % of BOD5 and 87.62 ± 2.47 % of COD using 24.00 ± 0.39 and 10.00 ± 0.07 h of HRT, respectively. The influence of the environmental variables and operational conditions on kinetic constants was studied; it was determined that the most influential variable for the decay coefficient for heterotrophic biomass was HRT (0.34 ± 0.14 and 0.31 ± 0.10 days−1 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively), while for heterotrophic biomass yield, this was temperature (0.61 ± 0.04 and 0.52 ± 0.06 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively). The results show that introducing carriers in an MBR system provides similar results for organic matter removal, but with a lower concentration of MLSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahl RM, Leiknes T, Ødegaard H (2006) Tracking particle size distributions in a moving bed biofilm membrane reactor for treatment of municipal wastewater. Water Sci Technol 53:33–42

    Article  CAS  Google Scholar 

  • APHA (1992) Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Canziani R, Emondi V, Garavaglia M, Malpei F, Pasinetti E, Buttiglieri G (2006) Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. J Membr Sci 286:202–212

    Article  CAS  Google Scholar 

  • Davis JA, Harrison K, Shields B (2009) Compact technology: increasing treatment capacity without building more basins. Fla Water Resour 7:24–29

    Google Scholar 

  • De Sanctis M, Di Iaconi C, Lopez A, Rossetti S (2010) Granular biomass structure and population dynamics in a sequencing batch biofilter granular reactor (SBBGR). Bioresour Technol 101:2152–2158

    Article  Google Scholar 

  • Falletti L, Conte L (2007) Upgrading of activated sludge wastewater treatment plants with hybrid moving-bed biofilm reactors. Ind Eng Chem Res 46:6656–6660

    Article  CAS  Google Scholar 

  • Ferrai M, Guglielmi G, Andreottola G (2010) Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment. Environ Modell Softw 25:626–632

    Article  Google Scholar 

  • Germain E, Stephenson T, Pearce P (2005) Biomass characteristics and membrane aeration: toward a better understanding of membrane fouling in submerged membrane bioreactors (MBRs). Biotechnol Bioeng 90(3):316–322

    Article  CAS  Google Scholar 

  • Germain E, Bancroft L, Dawson A, Hinrichs C, Fricker L, Pearce P (2007) Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations. Water Sci Technol 55(8–9):43–49

    Article  CAS  Google Scholar 

  • Gomez M, Dvorak L, Ruzickova I, Holba M, Wanner J (2012) Operational experience with a seasonally operated full-scale membrane bioreactor plant. Bioresour Technol 121:241–247

    Article  CAS  Google Scholar 

  • Gómez-Silván C, Molina-Muñoz M, Poyatos JM, Ramos A, Hontoria E, Rodelas B, González-López J (2010) Structure of archaeal communities in membrane-bioreactor and submerged-biofilter wastewater treatment plants. Bioresour Technol 101:2096–2105

    Article  Google Scholar 

  • Helle S (1999) A respirometric investigation of the activated sludge treatment of BKME during steady state and transient operating conditions. Ph.D. thesis, University of British Columbia

  • Henze M, Gujer W, Mino T, Van Loosdrecht MCM (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, London

    Google Scholar 

  • Ivanovic I, Leiknes T (2008) Impact of aeration rates on particle colloidal fraction in the biofilm membrane bioreactor (BF-MBR). Desalination 231:182–190

    Article  CAS  Google Scholar 

  • Ivanovic I, Leiknes T, Ødegaard H (2008) Fouling control by reduction of submicron particles in a BF-MBR with an integrated flocculation zone in the membrane reactor. Separ Sci Technol 43:1871–1883

    Article  CAS  Google Scholar 

  • Judd S (2010) The MBR book. Principles and applications of membrane bioreactors for water and wastewater treatment. Oxford, Butterworth Heinemann

    Google Scholar 

  • Kermani M, Bina B, Movahedian H, Amin MM, Nikaein M (2008) Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. Am J Environ Sci 4:675–682

    Article  CAS  Google Scholar 

  • Kim H, Gellner J, Boltz J, Freudenberg R, Gunsch C (2010) Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Res 4(4):1553–1561

    Article  Google Scholar 

  • Krzeminski P, Iglesias-Obelleiro A, Madebo G, Garrido JM, VanderGraaf JHJM, VanLier JB (2012) Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. J Membr Sci 423–424:348–361

    Article  Google Scholar 

  • Leiknes L, Ødegaard H (2007) The development of a biofilm membrane bioreactor. Desalination 202:135–143

    Article  CAS  Google Scholar 

  • Lepš J, Šmilauer P (1999) Multivariate Analysis of Ecological Data. University of South Bohemia, Ceské Budejovice, Faculty of Biological Sciences

    Google Scholar 

  • Mannina G, Viviani G (2009) Hybrid moving bed biofilm reactors: an effective solution for upgrading a large wastewater treatment plant. Water Sci Technol 60:1103–1116

    Article  CAS  Google Scholar 

  • Martín-Pascual J, López-López C, Cerdá A, González-López J, Hontoria E, Poyatos JM (2012) Comparative kinetic study of carrier type in a moving bed system applied to organic matter removal in urban wastewater treatment. Water Air Soil Poll 223:1699–1712

    Article  Google Scholar 

  • Melin E, Leiknes T, Helness H, Rasmussen V, Ødergard H (2005) Effect of organic loading rate on a wastewater treatment process combining moving bed biofilm and membrane reactors. Water Sci Technol 51:421–430

    CAS  Google Scholar 

  • Najafpour G, Yieng HA, Younesi H, Zinatizadeh A (2005) Effect of organic loading on performance of rotating biological contactors using palm oil mill effluents. Process Biochem 40:2879–2884

    Article  CAS  Google Scholar 

  • Ødegaard H, Rusten B, Westrum T (1994) A new moving bed biofilm reactor-applications and results. Water Sci Technol 29:157–165

    Google Scholar 

  • Plattes M, Henry E, Schosseler PM, Weidenhaupt A (2006) Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem Eng J 32:61–68

    Article  CAS  Google Scholar 

  • Plattes M, Henry E, Schosseler PM (2008) A zero-dimensional biofilm model for dynamic simulation of moving bed bioreactor systems: model concepts, peterson matrix, and application to a pilot-scale plant. Biochem Eng J 40:392–398

    Article  CAS  Google Scholar 

  • Poyatos JM, Molina-Muñoz M, Delgado F, González-López J, Hontoria E (2008) Flux influence on membrane fouling in a membrane bioreactor system under real conditions with urban wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1685–1691

    Article  CAS  Google Scholar 

  • Rahimi Y, Torabian A, Mehrdadi N, Habibi-Rezaie M, Pezeshk H, Nabi-Bidhendi G (2011) Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor. J Hazard Mater 186:1097–1102

    Article  CAS  Google Scholar 

  • Rodríguez FA, Poyatos JM, Reboleiro-Rivas P, Osorio F, González-López J, Hontoria E (2011) Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supply the aerobic conditions. Bioresour Technol 102:6013–6018

    Article  Google Scholar 

  • Rodríguez FA, Reboleiro-Rivas P, Osorio F, Martínez-Toledo MV, Hontoria E, Poyatos JM (2012) Influence of mixed liquid suspended solids and hydraulic retention time on oxygen transfer efficiency and viscosity in a submerged membrane bioreactor using pure oxygen to supply aerobic conditions. Biochem Eng J 60:135–141

    Article  Google Scholar 

  • Ruiz LM, Arévalo J, Parada J, González D, Moreno B, Pérez J, Gómez MA (2011) Respirometric assays of two different MBR (microfiltration and ultrafiltration) to obtain kinetic and stoichiometric parameters. Water Sci Technol 63:2478–2485

    Article  CAS  Google Scholar 

  • Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the kaldnes moving bed biofilm reactors. Aquacult Eng 34:322–331

    Article  Google Scholar 

  • Rutt K, Seda J, Johnson CH (2006) Two year case study of integrated fixed film activated sludge (IFAS) at Broomfield, CO WWTP. Proceedings of the water environment federation 225–239

  • Sokół W, Ambaw A, Woldeyes B (2009) Biological wastewater treatment in the inverse fluidised bed reactor. Chem Eng J 150:63–68

    Article  Google Scholar 

  • Sriwiriyarat T, Randall CW (2005) Performance of IFAS wastewater treatment processes for biological phosphorus removal. Water Res 39(16):3873–3884

    Article  CAS  Google Scholar 

  • Trapani DD, Mannina G, Torregrossa M, Viviani G (2010) Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci Technol 61:1757–1766

    Article  Google Scholar 

  • Trapani DD, Capodici P, Cosenza A, Di Bella G, Mannina G, Torregrossa M, Viviani G (2011) Evaluation of biomass activity and wastewater characterization in a UCT-MBR pilot plant by means of respirometric techniques. Desalination 269:190–197

    Article  Google Scholar 

  • Van der Roest HF, Lawrence DP, Van Bentem AGN (2002) Membrane Bioreactors for Municipal Wastewater Treatment. IWAI Publishing, Cornwall

    Google Scholar 

  • Wang XM, Wang JL (2012) Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition. Int J Environ Sci Technol 9:114–118

    Google Scholar 

  • Wang R, Wen X, Qian Y (2005) Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem 4:2992–3001

    Article  Google Scholar 

  • Yang Y, Yang F (2011) Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. J Hazard Mater 195:318–323

    Article  CAS  Google Scholar 

  • Yang S, Yang F, Fu Z, Lei R (2009) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource Technol 100:2369–2374

    Article  CAS  Google Scholar 

  • Yang S, Yang F, Fu Z, Wang T, Lei R (2010) Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater 175:551–557

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Menert A, Lemmiksoo V, Saluste A, Tenno T, Tomingas M (2011) Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration. J Environ Sci 23(7):1113–1121

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Vabamäe P, Tomingas M, Tenno T (2012a) Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation 23(4):547–560

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Saluste A, Tomingas M, Menert A, Loorits L, Lemmiksoo V, Tenno T (2012b) Achieving nitritation and anammox enrichment in single moving-bed biofilm reactor treating reject water. Environ Technol 33(6):703–710

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Vabamäe P, Kroon K, Loorits L, Saluste A, Tenno T (2012c) Effect of concentration on anammox nitrogen removal rate in a moving bed biofilm reactor. Environ Technol 33(20):2263–2271

    Article  CAS  Google Scholar 

  • Ziolko D, Hala D, Lester JN, Scrimshaw MD (2009) The effectiveness of conventional trickling filter treatment plants at reducing concentrations of copper in wastewaters. Sci Total Environ 407:6235–6241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Science and Technology under project reference CTM2009-11929-C02-01 and by the University of Granada through a personal grant to J. Martín-Pascual. This research was also made possible thanks to the participation of Empresa Municipal de Abastecimiento y Saneamiento de Granada (EMASAGRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Poyatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Pascual, J., Reboleiro-Rivas, P., López-López, C. et al. Influence of hydraulic retention time on heterotrophic biomass in a wastewater moving bed membrane bioreactor treatment plant. Int. J. Environ. Sci. Technol. 11, 1449–1458 (2014). https://doi.org/10.1007/s13762-013-0329-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0329-6

Keywords

Navigation