Skip to main content
Log in

Arsenic content, fractionation, and ecological risk in the surface sediments of lake

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The Nansi Lake has been seriously affected by long-term intensive industrial and urban activities. The objectives of this study were to determine the content, distribution, and ecological risk of arsenic and investigate the geochemical relationships between arsenic forms and sediment mineral phases of the Nansi Lake. Twenty samples of surface sediments were collected and analyzed for arsenic contents and chemical forms. Results indicated that total content of arsenic in the sediment samples averaged 13.45 mg/kg and ranged from 8.27 to 21.75 mg/kg. The arsenic was mostly associated with iron oxides (67.3%), followed by the association with the residual fraction (19.2%). In addition, total content of arsenic was positively correlated with the organic matter and iron contents in the sediment. The molar ratios of iron oxide bound arsenic content to iron content are lower than the maximal molar ratios of arsenic to iron for natural hematite, magnetite, and goethite. The total content of arsenic in the sediment samples was usually higher than threshold effect concentration of 9.79 mg/kg, but lower than probable effect concentration of 33.0 mg/kg for arsenic in freshwater sediments. Adverse effects or toxicity to the aquatic organisms, caused by arsenic in the sediments of the Nansi Lake, will likely occur at these levels of arsenic contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171(1–3):965–972

    Article  CAS  Google Scholar 

  • Bao SD (1999) Measurement of organic matter content in soil. In: Bao SD, Jiang RF, Yang CG (eds) Analysis of agri-chemistry in soil (3rd edn) (in Chinese). Chinese Agricultural Science and Technology Press, Beijing, pp 34–35

    Google Scholar 

  • Belzile N, Tessier A (1990) Interaction between arsenic and iron oxyhydroxides in lacustrine sediments. Geochim Cosmochim Acta 54(1):103–109

    Article  CAS  Google Scholar 

  • Blute NK, Jay JA, Swartz CH, Brabander DJ, Hemond HF (2009) Aqueous and solid phase arsenic speciation in the sediments of a contaminated wetland and riverbed. Appl Geochem 24(2):346–358

    Article  CAS  Google Scholar 

  • Chilvers DC, Peterson PJ (1987) Global cycling of arsenic. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment. John Wiley & Sons, Chichester, p 279

  • Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Technol 29(2):470–477

    Article  CAS  Google Scholar 

  • Feng XB, Hong B, Ni JY, Hong YT (1999) Chemical mobility of potentially toxic trace elements in coal at surface conditions (in Chinese with English abstract). Acta Sci Circumst 19(4):433–437

    CAS  Google Scholar 

  • Feng XD, Dang Z, Huang WL, Yang C (2009) Chemical speciation of fine particle bound trace metals. Int J Environ Sci Technol 6(3):337–346

    CAS  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monitor 4(6):823–857

    Article  CAS  Google Scholar 

  • Fuller CC, Davis JA, Waychunas GA (1993) Surface chemistry of ferrihydrite: Part 2 Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta 57(10):2271–2282

    Article  CAS  Google Scholar 

  • Giménez J, Martínez M, Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141(3):575–580

    Article  Google Scholar 

  • Gruebel KA, Leckie JO, Davis JA (1988) The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sediments. Soil Sci Soc Am J 52(2):390–397

    Article  CAS  Google Scholar 

  • Haque S, Ji JF, Johannesson KH (2008) Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA. J Contam Hydrol 99(1–4):68–84

    Article  CAS  Google Scholar 

  • Karbassi AR, Bayati I, Moattar F (2006) Origin and chemical partitioning of heavy metals in riverbed sediments. Int J Environ Sci Technol 3(1):35–42

    CAS  Google Scholar 

  • Keon NE, Swartz CH, Brabander DJ, Harvey C, Hemond HF (2001) Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ Sci Technol 35(13):2778–2784

    Article  CAS  Google Scholar 

  • Lang LR (1983) Study on formation of Nansi Lake (in Chinese with English abstract). Trans Oceanol Limnol 4(1):31–38

    Google Scholar 

  • Liu EF, Shen J, Yang LY, Zhu YX, Sun QY, Wang JJ (2007) Chemical fractionation and pollution characteristics of heavy metals in the sediment of Nansi Lake and its main inflow rivers (in Chinese with English abstract). China Environ Sci 28(6):1377–1383

    Google Scholar 

  • Liu GJ, Yang P, Peng ZC, Wang GL, Cao ZH (2002) Occurrence of trace elements in coal of Yanzhou Mining District (in Chinese with English abstract). Geochimica 31(1):85–90

    CAS  Google Scholar 

  • MacDonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5(4):253–278

    Article  CAS  Google Scholar 

  • Martin JM, Whitfield M (1983) The significance of the river input of chemical elements to the ocean. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in seawater. Plenum Press, New York, p 265

  • Mohiuddin KM, Zakir HM, Otomo K, Sharmin S, Shikazono N (2010) Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int J Environ Sci Technol 7(1):17–28

    CAS  Google Scholar 

  • National Standard of PR China (1984) Control standards for pollutants in sludges from agricultural use (GB 4284-84). Standards Press of China, Beijing (in Chinese)

  • National Standard of PR China (1995) Soil environmental quality (GB 15618-1995). Standards Press of China, Beijing (in Chinese)

  • Phiri O, Mumba P, Moyo BHZ, Kadewa W (2005) Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. Int J Environ Sci Technol 2(3):237–244

    CAS  Google Scholar 

  • Pichler T, Veizer J, Hall GEM (1999) Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe (III) oxyhydroxides. Environ Sci Technol 33(9):1373–1378

    Article  CAS  Google Scholar 

  • Pikaray S, Banerjee S, Mukherji S (2005) Sorption of arsenic onto Vindhyan shales: role of pyrite and organic carbon. Curr Sci 88(10):1580–1585

    Google Scholar 

  • Qu WC, Dickman M, Wang SM (2001) Mutivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China. Hydrobiologica 450(1–3):83–89

    CAS  Google Scholar 

  • Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium and adsorption envelopes. Environ Sci Technol 32(3):344–349

    Article  CAS  Google Scholar 

  • Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar Environ Res 48(2):161–176

    Article  CAS  Google Scholar 

  • Sekabira K, Oryem Origa H, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol 7(3):435–446

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field J (1996) A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J Great Lakes Res 22(3):624–638

    Article  CAS  Google Scholar 

  • Summer JK, Wade TL, Engle VD (1996) Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuar Coast 19(3):581–594

    Article  Google Scholar 

  • Swartz RC (1999) Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures. Environ Toxicol Chem 18(4):780–787

    Google Scholar 

  • Teng Y, Ni S, Wang L, Niu L (2009) Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environ Geol 57(7):1649–1660

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436(2):309–323

    Article  CAS  Google Scholar 

  • Whalley C, Rowlatt S, Bennett M, Lovell D (1999) Total arsenic in sediments from the western North Sea and Humber Estuary. Mar Pollut Bull 38(5):394–400

    Article  CAS  Google Scholar 

  • Zhang ZL, Sun QY, Peng LM, Niu ZG, Wu AM (1999) Water environment problems in the Nansi Lake area (in Chinese with English abstract). J Lake Sci 11(1):86–90

    Google Scholar 

  • Zhao YY, Yan MC (1992) Comparison of chemical elements abundance of Yellow River, Yangtze River and shallow sea in China (in Chinese with English abstract). Chin Sci Bull 37(13):1202–1204

    Google Scholar 

Download references

Acknowledgments

Financial supports to Wang, S. L. and Lin, C. Y. by the National Natural Science Foundation of China (40971058) and Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0809) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S.L., Lin, C.Y., Cao, X.Z. et al. Arsenic content, fractionation, and ecological risk in the surface sediments of lake. Int. J. Environ. Sci. Technol. 9, 31–40 (2012). https://doi.org/10.1007/s13762-011-0015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-011-0015-5

Keywords

Navigation