Skip to main content
Log in

Neuroprotective strategies of cerebrolysin for the treatment of infants with neonatal hypoxic–ischemic encephalopathy

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Background

Perinatal asphyxia (PA) is a devastating neonatal condition characterized by a lack of oxygen supporting the organ systems. PA can lead to hypoxic–ischemic encephalopathy (HIE), a brain dysfunction due to oxygen deprivation with a complex neurological sequela. The pathophysiology of HIE and PA is not entirely understood, with therapeutic hypothermia being the standard treatment with only limited value. However, alternative neuroprotective therapies can be a potential treatment modality.

Methods

In this review, we will characterize the biochemical mechanisms of PA and HIE, while also giving insight into cerebrolysin, a neuroprotective treatment used for HIE and PA.

Results

We found that cerebrolysin has up to 6-month treatment window post-ischemic insult. Cerebrolysin injections of 0.1 ml/kg of body weight twice per week were found to provide gross motor and speech deficit improvement.

Conclusion

Our literature search emphasizes the positive effects of cerebrolysin for general improvement outcomes. Nevertheless, biomarker establishment is warranted to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahearne CE, Boylan GB, Murray DM (2016) Short and long term prognosis in perinatal asphyxia: an update. World J Clin Pediatr 5(1):67–74. https://doi.org/10.5409/wjcp.v5.i1.67

    Article  PubMed  PubMed Central  Google Scholar 

  2. Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C (2019) Neuroprotective strategies following perinatal hypoxia-ischemia: taking aim at NOS. Free Radic Biol Med 142:123–131. https://doi.org/10.1016/j.freeradbiomed.2019.02.025

    Article  CAS  PubMed  Google Scholar 

  3. Lawn JE, Kerber K, Enweronu-Laryea C, Cousens S (2010) 36 Million neonatal deaths—what is progressing and what is not? Semin Perinatol 34(6):371–386. https://doi.org/10.1053/j.semperi.2010.09.011

    Article  PubMed  Google Scholar 

  4. Dzakpasu S, Joseph KS, Huang L, Allen A, Sauve R, Young D, Fetal, Infant Health Study Group of the Canadian Perinatal Surveillance S (2009) Decreasing diagnoses of birth asphyxia in Canada: fact or artifact. Pediatrics 123(4):e668-672. https://doi.org/10.1542/peds.2008-2579

    Article  PubMed  Google Scholar 

  5. Rainaldi MA, Perlman JM (2016) Pathophysiology of birth asphyxia. Clin Perinatol 43(3):409–422. https://doi.org/10.1016/j.clp.2016.04.002

    Article  PubMed  Google Scholar 

  6. Li B, Concepcion K, Meng X, Zhang L (2017) Brain-immune interactions in perinatal hypoxic–ischemic brain injury. Prog Neurobiol 159:50–68. https://doi.org/10.1016/j.pneurobio.2017.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwab M, Schaller R, Bauer R, Zwiener U (1997) Morphofunctional effects of moderate forebrain ischemia combined with short-term hypoxia in rats–protective effects of Cerebrolysin. Exp Toxicol Pathol 49(1–2):29–37. https://doi.org/10.1016/S0940-2993(97)80053-X

    Article  CAS  PubMed  Google Scholar 

  8. Fattuoni C, Palmas F, Noto A, Fanos V, Barberini L (2015) Perinatal asphyxia: a review from a metabolomics perspective. Molecules 20(4):7000–7016. https://doi.org/10.3390/molecules20047000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hilton GD, Nunez JL, Bambrick L, Thompson SM, McCarthy MM (2006) Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol. Eur J Neurosci 24(11):3008–3016. https://doi.org/10.1111/j.1460-9568.2006.05189.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ten VS, Starkov A (2012) Hypoxic–ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int 2012:542976. https://doi.org/10.1155/2012/542976

    Article  PubMed  PubMed Central  Google Scholar 

  11. Denihan NM, Kirwan JA, Walsh BH, Dunn WB, Broadhurst DI, Boylan GB, Murray DM (2019) Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic–ischaemic encephalopathy. J Cereb Blood Flow Metab 39(1):147–162. https://doi.org/10.1177/0271678X17726502

    Article  CAS  PubMed  Google Scholar 

  12. Schauer E, Wronski R, Patockova J, Moessler H, Doppler E, Hutter-Paier B, Windisch M (2006) Neuroprotection of cerebrolysin in tissue culture models of brain ischemia: post lesion application indicates a wide therapeutic window. J Neural Transm (Vienna) 113(7):855–868. https://doi.org/10.1007/s00702-005-0384-3

    Article  CAS  Google Scholar 

  13. Hassanein SM, Deifalla SM, El-Houssinie M, Mokbel SA (2016) Safety and efficacy of cerebrolysin in infants with communication defects due to severe perinatal brain insult: a randomized controlled clinical trial. J Clin Neurol 12(1):79–84. https://doi.org/10.3988/jcn.2016.12.1.79

    Article  PubMed  Google Scholar 

  14. Samir A, Nasef N, Fathy K, El-Gilany AH, Yahia S (2021) Effect of cerebrolysin on neurodevelopmental outcome of high risk preterm infants: a randomized controlled trial. J Neonatal Perinat Med. https://doi.org/10.3233/NPM-200659

    Article  Google Scholar 

  15. Chang WH, Lee J, Shin YI, Ko MH, Kim DY, Sohn MK, Kim J, Kim YH (2021) Cerebrolysin combined with rehabilitation enhances motor recovery and prevents neural network degeneration in ischemic stroke patients with severe motor deficits. J Pers Med. https://doi.org/10.3390/jpm11060545

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang C, Chopp M, Cui Y, Wang L, Zhang R, Zhang L, Lu M, Szalad A, Doppler E, Hitzl M, Zhang ZG (2010) Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res 88(15):3275–3281. https://doi.org/10.1002/jnr.22495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic hypothermia for neonatal hypoxic–ischemic encephalopathy—where to from here? Front Neurol 6:198. https://doi.org/10.3389/fneur.2015.00198

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nasiri J, Safavifar F (2017) Effect of cerebrolysin on gross motor function of children with cerebral palsy: a clinical trial. Acta Neurol Belg 117(2):501–505. https://doi.org/10.1007/s13760-016-0743-x

    Article  PubMed  Google Scholar 

  19. Hallman-Cooper JL, Rocha Cabrero F (2021) Cerebral palsy. StatPearls, Treasure Island (FL)

    Google Scholar 

  20. FREQUENTLY ASKED QUESTIONS CEREBROLYSIN®. (2021). Cerebrolysin. https://www.cerebrolysin.com/en/cerebrolysin/faqs/#:~:text=The%20side%20effects%20of%20Cerebrolysin,headache%2C%20sweating%2C%20and%20nausea. Accessed 9 Aug 2021

  21. Cui S, Chen N, Yang M, Guo J, Zhou M, Zhu C, He L (2019) Cerebrolysin for vascular dementia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008900.pub3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not received any funding for this work from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Fiani.

Ethics declarations

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiani, B., Chacon, D., Jarrah, R. et al. Neuroprotective strategies of cerebrolysin for the treatment of infants with neonatal hypoxic–ischemic encephalopathy. Acta Neurol Belg 121, 1401–1406 (2021). https://doi.org/10.1007/s13760-021-01795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-021-01795-y

Keywords

Navigation