Skip to main content

Advertisement

Log in

Pathophysiology of hypoxic–ischemic encephalopathy: a review of the past and a view on the future

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Hypoxic–ischemic encephalopathy, also referred as HIE, is a type of brain injury or damage that is caused by a lack of oxygen to the brain during neonatal period. The incidence is approximately 1.5 cases per 1000 live births in developed countries. In low and middle-income countries, the incidence is much higher (10‒20 per 1000 live births). The treatment for neonatal HIE is hypothermia that is only partially effective (not more than 50% of the neonates treated achieve an improved outcome). HIE pathophysiology involves oxidative stress, mitochondrial energy production failure, glutaminergic excitotoxicity, and apoptosis. So, in the last years, many studies have focused on peptides that act somewhere in the pathway activated by severe anoxic injury leading to HIE. This review describes the pathophysiology of perinatal HIE and the mechanisms that could be the target of innovative HIE treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-inducing factor

BBB:

Blood–brain barrier

BIP:

Bax-inhibiting peptide

ETC:

Electron transport chain

HI:

Hypoxia–ischemia

HIE:

Hypoxic–ischemic encephalopathy

HNSC:

Human neural stem cells

MMPs:

Matrix metalloproteinases

MPTP:

Mitochondrial permeability transition pore

NAD+ :

Nicotinamide adenine dinucleotide

NO:

Nitric oxide

PARP:

Poly(ADP-ribose) polymerase

PDHC:

Pyruvate dehydrogenase complex

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

References

  1. Adstamongkonkul D, Hess DC (2017) Ischemic conditioning and neonatal hypoxic ischemic encephalopathy: a literature review. Cond Med 1(1):9–16

    PubMed  PubMed Central  Google Scholar 

  2. Shah P, Perlman M (2009) Time courses of intrapartum asphyxia: neonatal characteristics and outcomes. Am J Perinatol 26(1):39–44

    PubMed  Google Scholar 

  3. Kurinczuk J, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86:329–338

    PubMed  Google Scholar 

  4. Lawn J, Shibuya K, Stein C (2005) No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull World Health Organ 83(6):409–417

    PubMed  PubMed Central  Google Scholar 

  5. Montaldo P, Pauliah SS, Lally PJ, Olson L, Thayyil S (2015) Cooling in a low-resource environment: lost in translation. Semin Fetal Neonatal Med. 20(2):72–79. https://doi.org/10.1016/j.siny.2014.10.004

    Article  PubMed  Google Scholar 

  6. Favié LMA, Cox AR, van den Hoogen A, Nijboer CHA, Peeters-Scholte CMPCD, van Bel F, Egberts TCG, Rademaker CMA, Groenendaal F (2018) Nitric oxide synthase inhibition as a neuroprotective strategy following hypoxic–ischemic encephalopathy: evidence from animal studies. Front Neurol 9:258. https://doi.org/10.3389/fneur.2018.00258

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wassink G, Gunn ER, Drury PP, Bennet L, Gunn AJ (2014) The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 8:40. https://doi.org/10.3389/fnins.2014.00040

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu F, McCullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 34:1121–1130

    PubMed  PubMed Central  Google Scholar 

  9. Higgins RD, Raju T, Edwards AD et al (2011) Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr 159:851–858

    PubMed  PubMed Central  Google Scholar 

  10. Edwards AD, Brocklehurst P, Gunn AJ et al (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340:c363

    PubMed  PubMed Central  Google Scholar 

  11. Carloni S, Facchinetti F, Pelizzi N, Buonocore G, Balduini W (2018) Melatonin acts in synergy with hypothermia to reduce oxygen-glucose deprivation-Induced cell death in rat hippocampus organotypic slice cultures. Neonatology 114:364–371

    PubMed  CAS  Google Scholar 

  12. Marcelino T, de Lemos RP, Miguel P, Netto C, Pereira Silva L, Matte C (2015) Effect of matermal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia. Brain Res 1622:91–101

    PubMed  CAS  Google Scholar 

  13. Edwards AB, Anderton RS, Knuckey NW, Meloni BP (2018) Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: a case for cationic arginine-rich peptides (CARPs). Brain Sci. https://doi.org/10.3390/brainsci8080147

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gunn A, Laptook A, Robertson N, Barks J, Thoresen M, Wassink GA (2017) Therapeutic hypothermia translates from ancient history in to practice. Pediatr Res 81:202–209

    PubMed  Google Scholar 

  15. Zubrow ABDPM, Ashraf Q, Fritz K, Mishra O (2002) Nitric oxide-mediated Ca2+/calmodulin-dependent protein kinase IV activity during hypoxia in neuronal nuclei from newborn piglets. Neurosci Lett 335:5–8

    PubMed  CAS  Google Scholar 

  16. Cao W, Carney J, Duchon A, Floyd R, Chevion M (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88(2):233–238

    PubMed  CAS  Google Scholar 

  17. Zubrow AB, Delivoria-Papadopoulosm M, Ashrafm QM et al (2002) Nitric oxide-mediated expression of Bax protein and DNA fragmentation during hypoxia in neuronal nuclei from newborn piglets. Brain Res 954(1):60–67

    PubMed  CAS  Google Scholar 

  18. Groenendaal F, Vles J, Lammers H, De Vente J, Smit D, Nikkels P (2008) Nitrotyrosine in human neonatal spinal cord after perinatal asphyxia. Neonatology 93(1):1–6

    PubMed  CAS  Google Scholar 

  19. Dorrepaal C, van Bel F, Moison R, Shadid M, van de Bor M, Steendijk P et al (1997) Oxidative stress during post-hypoxic-ischemic reperfusion in the newborn lamb: the effect of nitric oxide synthesis inhibition. Pediatr Res 41:321–326

    PubMed  CAS  Google Scholar 

  20. Lu Y, Tucker D, Dong Y, Zhao N, Zhuo X, Zhang Q (2015) Role of mitochondria in neonatal hypoxic-ischemic brain injury. J Neurosci Rehabil 2(1):1–14

    PubMed  PubMed Central  Google Scholar 

  21. Erecinska M, Silver I (1994) Ions and energy in mammalian brain. Prog Neurobiol 43(1):37–71

    PubMed  CAS  Google Scholar 

  22. Gilland E, Puka-Sundvall M, Hillered L, Hagberg H (1998) Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature brain: involvement of NMDA receptors. J Cereb Blood Flow Metab 18(3):297–304

    PubMed  CAS  Google Scholar 

  23. Wang K (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–6

    PubMed  Google Scholar 

  24. Wang H, Pathan N, Ethell I, Krajewski S, Yamaguchi Y, Shibasaki F et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 229:339–343

    Google Scholar 

  25. McDonald J, Johnston M (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 15:41–70

    PubMed  Google Scholar 

  26. Johnston MV, Trescher WH, Ishida A, Nakajima W, Zipursky A (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49(6):735–741

    PubMed  CAS  Google Scholar 

  27. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316

    PubMed  CAS  Google Scholar 

  28. Thornton C, Rousset CI, Kichev A, Miyakuni Y, Vontell R, Baburamani AA et al (2012) Molecular mechanisms of neonatal brain injury. Neurol Res Int 2012:e506320

    Google Scholar 

  29. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008

    PubMed  CAS  Google Scholar 

  30. Concannon CG, Tuffy LP, Weisová P et al (2010) AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. J Cell Biol 189(1):83–94. https://doi.org/10.1083/jcb.200909166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Uchino H, Minamikawa-Tachino R, Kristián T, Perkins G, Narazaki M, Siesjö B et al (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochodrial permeability transition. Neurobiol Dis 10(3):219–233

    PubMed  CAS  Google Scholar 

  32. Alessandri B, Rice A, Levasseur J, DeFord M, Hamm R, Bullock M (2002) Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 19(7):829–841

    PubMed  Google Scholar 

  33. Perier C, Tieu KGC, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A et al (2005) Complex I deficiency primes bax dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA 102(52):19126–21913

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Thornton C, Hagberg H (2015) Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 451:35–38

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Nakajima W, Ishida ALM, Gabrielson K, Wilson M, Martin L, Blue M et al (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20(21):7994–8004

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Montaldo P, Kaforou M, Pollara G et al (2019) Whole blood gene expression reveals specific transcriptome changes in neonatal encephalopathy. Neonatology 115(1):68–76

    PubMed  CAS  Google Scholar 

  37. Northington FJ, Chavez-Valdez R, Martin LJ (2011) Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 69(5):743–758

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Ginet V, Puyal J, Clarke PG, Truttmann AC (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 175(5):1962–1974

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Koike M, Shibata M, Tadakoshi M et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172(2):454–469

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Xu Y, Tian Y, Tian Y, Li X, Zhao P (2016) Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 139(5):795–805

    PubMed  CAS  Google Scholar 

  41. Choi D, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Ann Rev Neurosci 13:171–182

    PubMed  CAS  Google Scholar 

  42. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Del Bigio M, Becker L (1994) Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol 20:144–151

    PubMed  Google Scholar 

  44. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS et al (2015) The role of inflammation in perinatal brain injury. Nat Rev Neurol 11:192–208

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Faustino J, Wang X, Johnson C, Klibanov A, Derugin N, Wendland M et al (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31:12992–13001

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Varnum M, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp 60:251–266

    CAS  Google Scholar 

  47. Swanson R, Ying W, Kauppinen T (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    PubMed  CAS  Google Scholar 

  48. Anderson C, Swanson R (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    PubMed  CAS  Google Scholar 

  49. Jiang N, Chopp M, Chahwala S (1998) Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat. Brain Res 788:25–34

    PubMed  CAS  Google Scholar 

  50. Bona E, Andersson A, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K et al (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45(4 Pt 1):500–509

    PubMed  CAS  Google Scholar 

  51. Yıldız E, Ekici B, Tatlı B (2017) Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 17(5):449–459

    PubMed  Google Scholar 

  52. Liu J, Feng ZC (2010) Increased umbilical cord plasma interleukin-1 beta levels was correlated with adverse outcomes of neonatal hypoxicischemic encephalopathy. J Trop Pediatr 56:178–182

    PubMed  Google Scholar 

  53. Green H, Treacy E, Keohane A, Sullivan A, O’Keeffe G, Nolan Y (2012) A role for interleukin-1beta in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci 49:311–312

    PubMed  CAS  Google Scholar 

  54. Martin D, Chinookoswong N, Miller G (1994) The interleukin-1 receptor antagonist (rhIL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia. Exp Neurol 130:362–367

    PubMed  CAS  Google Scholar 

  55. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    PubMed  CAS  Google Scholar 

  56. Wu Q, Chen W, Sinha B et al (2015) Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov Today 20(11):1372–1381

    PubMed  CAS  Google Scholar 

  57. Nair J, Kumar VHS (2018) Current and emerging therapies in the management of hypoxic ischemic encephalopathy. Children (Basel). https://doi.org/10.3390/children5070099

    Article  Google Scholar 

  58. Faulkner S, Bainbridge A, Kato T, Chandrasekaran M, Kapetanakis AB, Hristova M, Liu M, Evans S, De Vita E, Kelen D et al (2011) Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 70:133–150

    PubMed  CAS  Google Scholar 

  59. Chakkarapani E, Dingley J, Liu X, Hoque N, Aquilina K, Porter H, Thoresen M (2010) Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 68:330–341

    PubMed  Google Scholar 

  60. Azzopardi D, Robertson NJ, Bainbridge A, Cady E, Charles-Edwards G, Deierl A, Fagiolo G, Franks NP, Griffiths J, Hajnal J et al (2016) Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol 15:145–153

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Faulkner SD, Downie NA, Mercer CJ, Kerr SA, Sanders RD, Robertson NJ (2012) A xenon recirculating ventilator for the newborn piglet: developing clinical applications of xenon for neonates. Eur J Anaesthesiol 29:577–585

    PubMed  Google Scholar 

  62. Broad KD, Fierens I, Fleiss B, Rocha-Ferreira E, Ezzati M, Hassell J, Alonso-Alconada D, Bainbridge A, Kawano G, Ma D et al (2016) Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis 87:29–38

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Aly H, Elmahdy H, El-Dib M, Rowisha M, Awny M, El-Gohary T, Elbatch M, Hamisa M, El-Mashad AR (2015) Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 35:186–191

    PubMed  CAS  Google Scholar 

  64. Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE, Van Meurs KP, Rogers EE, Gonzalez FF, Comstock BA et al (2016) High-dose erythropoietin and hypothermia for hypoxic-ischemic encephalopathy: a phase ii trial. Pediatrics 137:e20160190

    Google Scholar 

  65. Baserga MC, Beachy JC, Roberts JK, Ward RM, DiGeronimo RJ, Walsh WF, Ohls RK, Anderson J, Mayock DE, Juul SE et al (2015) Darbepoetin administration to neonates undergoing cooling for encephalopathy: a safety and pharmacokinetic trial. Pediatr Res 78:315–322

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Chaudhari T, McGuire W (2012) Allopurinol for preventing mortality and morbidity in newborn infants with hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006817.pub3

    Article  PubMed  Google Scholar 

  67. Maiwald CA, Annink KV, Rüdiger M et al (2019) Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III). BMC Pediatr 19(1):210

    PubMed  PubMed Central  Google Scholar 

  68. Bhat MA, Charoo BA, Bhat JI, Ahmad SM, Ali SW, Mufti MU (2009) Magnesium sulfate in severe perinatal asphyxia: a randomized, placebo-controlled trial. Pediatrics 123:e764–e769

    PubMed  Google Scholar 

  69. Galinsky R, Bennet L, Groenendaal F, Lear CA, Tan S, van Bel F, Juul SE, Robertson NJ, Mallard C, Gunn AJ (2014) Magnesium is not consistently neuroprotective for perinatal hypoxia-ischemia in term-equivalent models in preclinical studies: a systematic review. Dev Neurosci 36:73–82

    PubMed  CAS  Google Scholar 

  70. Tagin M, Shah PS, Lee KS (2013) Magnesium for newborns with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis. J Perinatol 33:663–669

    PubMed  CAS  Google Scholar 

  71. Felling RJ, Snyder MJ, Romanko MJ, Rothstein RP, Ziegler AN, Yang Z et al (2006) Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci 26(16):4359–4369

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Parry SM, Peeples ES (2018) The impact of hypoxic-ischemic brain injury on stem cell mobilization, migration, adhesion, and proliferation. Neural Regen Res 13(7):1125–1135. https://doi.org/10.4103/1673-5374.235012

    Article  PubMed  PubMed Central  Google Scholar 

  73. Daadi MM, Davis AS, Arac A et al (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic–ischemic brain injury. Stroke 41(3):516–523

    PubMed  PubMed Central  Google Scholar 

  74. Shinoyama M, Ideguchi M, Kida H et al (2013) Cortical region-specific engraftment of embryonic stem cell derived neural progenitor cell restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic ischemic brain injury. Front Cell Neurosci 7:128

    PubMed  PubMed Central  Google Scholar 

  75. Ji G, Liu M, Zhao XF et al (2015) NF-kB signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxic–ischemic encephalopathy. CNS Neurosci Ther 21(12):926–935

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Luan Z, Yin GC, Hu XH et al (2005) Treatment of an infant with severe neonatal hypoxic–ischemic encephalopathy sequelae with transplantation of human neural stem cell into cerebral ventricle. Zhonghua Er Ke Za Zhi 43(8):580–583 (discussion 580)

    PubMed  Google Scholar 

  77. Luan Z, Liu WP, Qu SQ et al (2011) Treatment of newborns with severe injured brain with transplantation of human neural precursor cell. Zhonghua Er Ke Za Zhi 49(6):445–449

    PubMed  Google Scholar 

  78. Pimentel-coelho PM, Magalhaes ES, Lopes LM et al (2010) Human cord blood transplantation in a neonatal rat model of hypoxic–ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19(3):351–358

    PubMed  Google Scholar 

  79. Huang HZ, Wen XH, Liu H et al (2013) Human umbilical cord blood mononuclear cell transplantation promotes long-term neurobehavioral functional development of newborn SD rats with hypoxic ischemic brain injury. Zhonghua Er Ke Za Zhi 51(6):460–466

    PubMed  Google Scholar 

  80. Yasuhara T, Hara K, Maki M et al (2010) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic–ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14(4):914–921

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Shankaran S (2012) Therapeutic hypothermia for neonatal encephalopathy. Curr Treat Options Neurol 14:608–619

    PubMed  PubMed Central  Google Scholar 

  82. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 1:CD003311. https://doi.org/10.1002/14651858.CD003311.pub3

    Article  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sorrentino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, P., Nencini, G., Piva, I. et al. Pathophysiology of hypoxic–ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg 120, 277–288 (2020). https://doi.org/10.1007/s13760-020-01308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01308-3

Keywords

Navigation