Skip to main content
Log in

Comparative analysis of bisphenol-A removal efficiency from water: equilibrium, kinetics, thermodynamics and optimization evaluations

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This work examined the comparative sorption efficiency of Bisphenol-A (BPA) from water using four adsorbents: commercial activated carbon (AC), magnetic commercial activated carbon (MAC), activated carbon from walnut shell (AW) and magnetic activated carbon from walnut shell (MAW), respectively. The structural composition of AC, MAC, AW and MAW was studied by X-ray diffraction (XRD) spectroscopy and Fourier transform infrared (FT-IR). Batch sorption studies at different physicochemical properties under different experimental conditions were carried out. Data generated were subjected to kinetic, isotherm models and optimized using Box–Behnken design. Results showed that BPA uptake increases as the pH becomes more acidic and peaked at 2. Kinetic results indicated pseudo-first-order kinetics thus signifying physical adsorption mechanism. Langmuir isotherm gave a better fit compared to Freundlich isotherm, with maximum adsorption capacity of 55.48, 61.67, 89.23, and 92.27 mg/g for AW, AC, MAW, and MAC, respectively. Also, the thermodynamics data demonstrated that the process of adsorption was spontaneous, feasible and endothermic. Furthermore, regression equations of the experimental data derived using linear, quadratic, factorial design and cubic interaction models showed that the regression coefficient of quadratic model was much closer and congruent compared to the rest of the model. Thus, the magnetic adsorbents can be considered to be better adsorbents when compared with the non-magnetic forms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Pivnenko, G.A. Pedersen, E. Eriksson, T.F. Astrup, Waste Manag. 44, 39–47 (2015). https://doi.org/10.1016/j.wasman.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  2. Rachael, F.L.: Organic Leachates from Water Service Line Liners and Coatings and Their Fate in Drinking Water. https://pdfs.semanticscholar.org (2015). Accessed on 12 July 2019

  3. F.V. Saal, C. Hughes, Environ. Health Perspect. 114(1), 1-A64 (2006). https://doi.org/10.1289/ehp.114-1332691

    Article  Google Scholar 

  4. A.C. Gore, V.A. Chappell, S.E. Fenton, J.A. Flaws, A. Nadal, G.S. Prins, J. Toppari, R.T. Zoeller, Endocr. Rev. 36(6), 593–602 (2015). https://doi.org/10.1210/er.2015-1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. HSDB, HSDB/TOXNET Hazardous Substance. https://www.nlm.nih.gov/databases/download/hsdb.html (2000). Accessed on 15 of April 2020

  6. Food and Drug Administration, U.S. Department of Health and Human Services. https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-application (2018). Accessed June 2 2019

  7. M. Ahmedna, W.E. Marshall, A.A. Husseiny, R.M. Rao, I. Goktepe, Water Res. 38, 1062–1068 (2004). https://doi.org/10.1016/j.watres.2003.10.047

    Article  CAS  PubMed  Google Scholar 

  8. L. Tang, Z. Xie, G. Zeng, H. Dong, C. Fan, Y. Zhou, J. Wang, Y. Deng, J. Wang, X. Wei, RSA Adv. 6, 25724–25732 (2016). https://doi.org/10.1039/C5RA27710H

    Article  CAS  Google Scholar 

  9. Z. Marzougui, A. Chaabouni, B. Elleuch, A. Elaissari, Environ. Sci. Pollut. Res. 23, 15807–15819 (2016). https://doi.org/10.1007/s11356-015-5407-5

    Article  CAS  Google Scholar 

  10. Y. Zhang, C. Yuxiao, C. Ningning, Z. Yuyan, L. Bingyu, G. Wei, S. Xinhao, X. Yuezhong, J. Colloid Interface Sci. 421, 85–92 (2014). https://doi.org/10.1016/j.jcis.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  11. Y. Zhou, L. Chen, P. Lu, X. Tang, J. Lu, Sep. Purif. Technol. 81(2), 184–190 (2011). https://doi.org/10.1016/j.seppur.2011.07.026

    Article  CAS  Google Scholar 

  12. E. Alireza, P. Elmira, A. Mokhatar, B. Hajir, Desalination Water Treat. 12, 2249–2259 (2013). https://doi.org/10.1080/19443994.2013.860631

    Article  CAS  Google Scholar 

  13. I. Bautista-Toledo, M. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno-Castilla, F.C. Fernández, Environ. Sci. Technol. 39, 6246–6250 (2005). https://doi.org/10.1021/es0481169

    Article  CAS  PubMed  Google Scholar 

  14. G. Liu, J. Ma, X. Li, Q. Qin, J. Hazard. Mater. 164, 1275–1280 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.038

    Article  CAS  PubMed  Google Scholar 

  15. A. Esposito, F. Pagnanelli, A. Lodi, C. Solisio, F. Veglio, J. Hydrometall. 60, 129–141 (2001). https://doi.org/10.1016/S0304-386X(00)00195-X

    Article  CAS  Google Scholar 

  16. R. Razmovski, M. Sciban, Ecol. Eng. 34, 179–186 (2008). https://doi.org/10.1016/j.ecoleng.2008.07.020

    Article  Google Scholar 

  17. H.S. Park, J.R. Koduru, K.H. Choo, B.W. Lee, J. Hazard. Mater 286, 315–324 (2015). https://doi.org/10.1016/j.jhazmat.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  18. J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang, J. Hazard. Mater. 164, 1517–1522 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.072

    Article  CAS  PubMed  Google Scholar 

  19. S.A. Kim, S. Kamala-Kannan, K.J. Lee, Y.J. Park, P.J. Shea, W.H. Lee, H.-M. Kim, B.-T. Chem, Eng. J. 217, 54–60 (2013). https://doi.org/10.1016/j.cej.2012.11.097

    Article  CAS  Google Scholar 

  20. Y. Xi, Z. Sun, T. Hreid, G.A. Ayoko, R.L. Frost, Chem. Eng. J. 247, 66–74 (2014). https://doi.org/10.1016/j.cej.2014.02.077

    Article  CAS  Google Scholar 

  21. K.L. Han, T.T. Tjoon, H.I. Mohamad, A. Anees, T.C. Hui, APCBEE Proc. 1, 96–102 (2012). https://doi.org/10.1016/j.apcbee.2012.03.017

    Article  CAS  Google Scholar 

  22. E.A. Ofudje, A.O. Awotula, G.V. Hambate, F. Akinwunmi, S.O. Alayande, O.D. Olukanni, Desalination Water Treat. 86, 240–251 (2017). https://doi.org/10.5004/dwt.2017.21339

    Article  CAS  Google Scholar 

  23. C. Limei, W. Yaoguang, H. Lihua, G. Liang, D. Bin, W. Qin, RSC Adv. 5, 9757–9770 (2015). https://doi.org/10.1039/C4RA13009J

    Article  CAS  Google Scholar 

  24. D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pitman Jr., Chem. Eng. J. 172(1111–1125), 1111–1125 (2011). https://doi.org/10.1016/j.cej.2011.06.054

    Article  CAS  Google Scholar 

  25. A.I. Adeogun, E.A. Ofudje, M.A. Idowu, S.O. Kareem, S. Vahidhabanu, B.R. Babu, Desalination Water Treat. 107, 182–194 (2018). https://doi.org/10.5004/dwt.2018.22122

    Article  CAS  Google Scholar 

  26. B.B. Tewari, D. Mohan, D. Kamaluddin, Colloids Surf. A Physicochem. Eng. Asp. 131, 89–93 (1998). https://doi.org/10.1016/S0927-7757(97)00097-6

    Article  CAS  Google Scholar 

  27. N.D. Hutson, R.T. Yang, Adsorption 3(3), 189–195 (2000). https://doi.org/10.1007/BF01650130

    Article  Google Scholar 

  28. S. Li, G. Yibin, Y. Yichang, H. Chun, H. Lingling, Z. Linfei, S. Lianpeng, S. Dong, Chem. Eng. J. 260, 231–239 (2015). https://doi.org/10.1016/j.cej.2014.09.032

    Article  CAS  Google Scholar 

  29. Z. Lei, L. Junna, X. Tianci, Y. Lijun, J. Xiaoqing, L. Qi, Sep. Purif. Technol. 116, 145–153 (2013). https://doi.org/10.1016/j.seppur.2013.05.036

    Article  CAS  Google Scholar 

  30. W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, J. Colloid Interface Sci. 299(2), 513–519 (2006). https://doi.org/10.1016/j.jcis.2006.02.034

    Article  CAS  PubMed  Google Scholar 

  31. J. Xu, W. Li, Z. Yongfa, Langmuir 28(22), 8418–8425 (2012). https://doi.org/10.1021/la301476p

    Article  CAS  PubMed  Google Scholar 

  32. B. Balci, F.E. Erkurt, Adsorpt. Sci. Technol. 353(3–4), 339–356 (2017). https://doi.org/10.1177/0263617416676819

    Article  CAS  Google Scholar 

  33. L. Peng, X. Xu, H. Mu, C.E. Hoy, J. Alder-Nissen, Enzym. Microb. Technol. 31, 523–532 (2002). https://doi.org/10.1016/S0141-0229(02)00147-3

    Article  CAS  Google Scholar 

  34. M. Cobas, M. Sanroman, M. Pazos, Bioresour. Technol. 160, 166–174 (2014). https://doi.org/10.1016/j.biortech.2013.12.125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The contributions of staff from Central Research Laboratory and Department of Chemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria are well appreciated.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to this research work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. A. Idowu.

Ethics declarations

Competing interests

All authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzosike, A.O., Ofudje, E.A., Adeogun, A.I. et al. Comparative analysis of bisphenol-A removal efficiency from water: equilibrium, kinetics, thermodynamics and optimization evaluations. J IRAN CHEM SOC 19, 4645–4658 (2022). https://doi.org/10.1007/s13738-022-02628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02628-2

Keywords

Navigation