Skip to main content
Log in

Excellent photocatalytic rhodamine B degradation for water remediation over Pr3+ doped Bi2WO6 microspheres

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, a series of Pr3+ doped Bi2WO6 had been successfully prepared by one-step hydrothermal method. The prepared Pr- Bi2WO6 were characterized by XRD, UV–Vis DRS, PL, SEM, TEM, XPS and N2 adsorption–desorption to study their physical–chemical properties. Rhodamine B (RhB) was photodegraded as a target organic pollutant to investigate the photocatalytic activity of the as-prepared samples. The results show that Pr doping retains the phase and morphology of Bi2WO6, enlarges the specific surface area and reduces the recombination rate of photogenerated electrons and holes, thus the removal efficiency of RhB under simulated solar irradiation was remarkably improved. The optimum molar ratio of Pr to Bi2WO6 was 1%, whose degradation efficiency of RhB reached 99.4% within 20 min. The improved photocatalytic activity can be ascribed to the optimum optical absorption activity, the larger specific surface area and the morphology of microspheres which resulted in the effective separation of the photogenerated electron hole pairs. In addition, the h+ plays a major role in the photodegradation of RhB by all Pr doped Bi2WO6 samples according to the radical-trapping experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

References

  1. F. Chen, Z. Ma, L. Ye, T. Ma, T. Zhang, Y. Zhang, H. Huang, Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 32, 1908350 (2020). https://doi.org/10.1002/adma.201908350

    Article  CAS  Google Scholar 

  2. S. Wang, X. Han, Y. Zhang, N. Tian, T. Ma, H. Huang, Inside-and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends. Small Struct. 2, 2000061 (2020). https://doi.org/10.1002/sstr.202000061

    Article  CAS  Google Scholar 

  3. Z. Pei, H. Jia, Y. Zhang, P. Wang, Y. Liu, W. Cui, J. Xu, J. Xie, A One-pot hydrothermal synthesis of Eu/BiVO4 enhanced visible-light-driven photocatalyst for degradation of tetracycline. J. Nanosci. Nanotech. 20, 3053–3059 (2020). https://doi.org/10.1166/jnn.2020.17446

    Article  CAS  Google Scholar 

  4. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J. Clean. Prod. 276, 124319 (2020). https://doi.org/10.1016/j.jclepro.2020.124319

    Article  CAS  Google Scholar 

  5. X. Li, J. Xiong, X. Gao, J. Ma, Z. Chen, B. Kang, J. Liu, H. Li, Z. Feng, J. Huang, Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J. Hazad. Mater. 387, 121690 (2019). https://doi.org/10.1016/j.jhazmat.2019.121690

    Article  CAS  Google Scholar 

  6. D. Huang, H. Liu, J. Bian, T. Li, B. Huang, Q. Niu, High specific surface area TiO2 nanospheres for hydrogen production and photocatalytic activity. J. Nanosci. Nanotech. 20, 3217–3224 (2020). https://doi.org/10.1166/jnn.2020.17380

    Article  CAS  Google Scholar 

  7. M. Golmohammadi, M. Honarmand, S. Ghanbari, A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochim. Acta A 229, 117961 (2020). https://doi.org/10.1016/j.saa.2019.117961

    Article  CAS  Google Scholar 

  8. G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, H. Che, C. Lai, H. Li, T. Ding, Q. Gao, Z. Guo, Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 11, 18968–18994 (2019). https://doi.org/10.1039/C9NR03474A

    Article  CAS  PubMed  Google Scholar 

  9. P.L. Hsieh, G. Naresh, Y.S. Huang, C.W. Tsao, Y.J. Hsu, L.J. Chen, M.H. Huang, Shape-tunable SrTiO3 crystals revealing facet-dependent optical and photocatalytic properties. J. Phys. Chem. C 123, 13664–13671 (2019). https://doi.org/10.1021/acs.jpcc.9b02081

    Article  CAS  Google Scholar 

  10. X. Tian, Y. Zhu, W. Zhang, Z. Zhang, R. Hua, Preparation and photocatalytic properties of Mo-doped BiVO4. J. Mater. Sci. Mater. Electron. 30, 19335–19342 (2019). https://doi.org/10.1007/s10854-019-02295-9

    Article  CAS  Google Scholar 

  11. X. Zhang, W. Gai, Effect of surfactant on the photocatalytic activity of Bi2WO6 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 9777–9781 (2017). https://doi.org/10.1007/s10854-017-6730-z

    Article  CAS  Google Scholar 

  12. X. Ning, G. Lu, Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 12, 1213–1223 (2020). https://doi.org/10.1039/C9NR09183A

    Article  CAS  PubMed  Google Scholar 

  13. C. Cheng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: An advanced catalyst for Cr(VI) reduction. J. Hazard. Mater. 391, 122205 (2020). https://doi.org/10.1016/j.jhazmat.2020.122205

    Article  CAS  PubMed  Google Scholar 

  14. M. Chen, Y. Huang, S. Lee, Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal. Chin. J. Catal. 38, 348 (2017). https://doi.org/10.1016/S1872-2067(16)62584-6

    Article  CAS  Google Scholar 

  15. A. Yang, Y. Han, S. Li, H. Xing, Y. Pan, W. Liu, Synthesis and comparison of photocatalytic properties for Bi2WO6 nanofibers and hierarchical microspheres. J. Alloy. Comp. 695, 915–921 (2017). https://doi.org/10.1016/j.jallcom.2016.10.188

    Article  CAS  Google Scholar 

  16. G. Li, Electrospinning fabrication and photocatalytic activity of Bi2WO6 nanofibers. J. Mater. Sci. Mater. Electron. 28, 12320–12325 (2017). https://doi.org/10.1007/s10854-017-7050-z

    Article  CAS  Google Scholar 

  17. X. Hu, J. Tian, Y. Xue, Y. Li, H. Cui, Bi2WO6 Nanosheets decorated with Au nanorods for enhanced near-Infrared photocatalytic properties based on surface plasmon resonance effects and wide-range near-infrared light harvesting. ChemCatChem 9, 1511–1516 (2017). https://doi.org/10.1002/cctc.201601719

    Article  CAS  Google Scholar 

  18. G. Zhang, J. Cao, G. Huang, J. Li, D. Li, W. Yao, T. Zeng, Facile fabrication of well-polarized Bi2WO6 nanosheets with enhanced visible-light photocatalytic activity. Catal. Sci. Technol. 8, 6420–6428 (2018). https://doi.org/10.1039/C8CY01963K

    Article  CAS  Google Scholar 

  19. S. Hu, B. Wang, Y. Ma, M. Li, L. Zhang, Z. Huang, Ultrathin bismuth tungstate nanosheets as an effective photo-assisted support for electrocatalytic methanol oxidation. J. Colloid. Interf. Sci. 552, 179–185 (2019). https://doi.org/10.1016/j.jcis.2019.05.048

    Article  CAS  Google Scholar 

  20. S. Luo, J. Ke, M. Yuan, Q. Zhang, P. Xie, L. Deng, S. Wang, CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl. Catal. B 221, 215–222 (2018). https://doi.org/10.1016/j.apcatb.2017.09.028

    Article  CAS  Google Scholar 

  21. Y. Zhao, Y. Wang, E. Liu, J. Fan, X. Hu, Bi2WO6 nanoflowers: An efficient visible light photocatalytic activity for ceftriaxone sodium degradation. Appl. Surf. Sci. 436, 854–864 (2018). https://doi.org/10.1016/j.apsusc.2017.12.064

    Article  CAS  Google Scholar 

  22. Y. Wang, J. He, D. Peng, T. Zhang, F. Long, X. Zhang, Enhanced photocatalytic performance of Mg2+ doped Bi2WO6 under simulated visible light irradiation. Ionics 24, 2893–2903 (2018). https://doi.org/10.1007/s11581-017-2394-1

    Article  CAS  Google Scholar 

  23. L. Xiang, L. Chen, C. Mo, L. Zheng, Z. Yu, Y. Li, Q. Cai, H. Li, W. Yang, D. Zhou, M. Wong, Facile synthesis of Ni-doping Bi2WO6 nano-sheets with enhanced adsorptive and visible-light photocatalytic performances. J. Mater. Sci. 53, 7657–7671 (2018). https://doi.org/10.1007/s10853-018-2064-3

    Article  CAS  Google Scholar 

  24. N.D. Phu, L.H. Hoang, P.V. Hai, T.Q. Huy, X. Chen, W.C. Chou, Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification. J. Alloy. Comp. 824, 153914 (2020). https://doi.org/10.1016/j.jallcom.2020.153914

    Article  CAS  Google Scholar 

  25. T. Hu, H. Li, N. Du, W. Hou, Iron-doped bismuth tungstate with an excellent photocatalytic performance. ChemCatChem 10, 3040–3048 (2018). https://doi.org/10.1002/cctc.201701965

    Article  CAS  Google Scholar 

  26. H. Yu, C. Chu, X. An, Enhanced visible-light-driven photocatalytic activity of F doped reduced graphene oxide- Bi2WO6 photocatalyst: Enhanced photocatalytic activity of F-doped rGO-BWO photocatalyst. Appl. Organomet. Chem. 33, 4682 (2019). https://doi.org/10.1002/aoc.4682

    Article  CAS  Google Scholar 

  27. L. Hoang, N. Phu, H. Peng, X. Chen, High photocatalytic activity N-doped Bi2WO6 nanoparticles using a two-step microwave-assisted and hydrothermal synthesis. J. Alloy. Comp. 744, 228–233 (2018). https://doi.org/10.1016/j.jallcom.2018.02.094

    Article  CAS  Google Scholar 

  28. F. Zhang, R. Sun, R. Li, N. Song, L. Feng, S. Zhong, Z. Zhao, Novel La-doped Bi2WO6 photocatalysts with enhanced visible-light photocatalytic activity. J. Sol-gel Sci. Techn. 86, 640–649 (2018). https://doi.org/10.1007/s10971-018-4683-1

    Article  CAS  Google Scholar 

  29. J. Li, G. Ni, Y. Han, Y. Ma, Synthesis of La doped Bi2WO6 nanosheets with high visible light photocatalytic activity. J. Mater. Sci. Mater. Electron. 28, 10148–10157 (2017). https://doi.org/10.1007/s10854-017-6777-x

    Article  CAS  Google Scholar 

  30. H. Gu, L. Yu, J. Wang, M. Ni, T. Liu, F. Chen, Tunable luminescence and enhanced photocatalytic activity for Eu(III) doped Bi2WO6 nanoparticles. Spectrochim. Acta Part A 177, 58–62 (2017). https://doi.org/10.1016/j.saa.2017.01.034

    Article  CAS  Google Scholar 

  31. L. Hoang, N. Phu, P. Chung, P. Guo, X. Chen, W. Chou, Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Gd-doping via microwave assisted method. J. Mater. Sci. Mater. Electron. 28, 12191–12196 (2017). https://doi.org/10.1007/s10854-017-7034-z

    Article  CAS  Google Scholar 

  32. H.A. Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, S. Villain, F. Guinneton, J. Gavarri, Novel Lu-doped Bi2WO6 nanosheets: Synthesis, growth mechanisms and enhanced photocatalytic activity under UV-light irradiation. Ceram. Int. 42, 8552–8558 (2016). https://doi.org/10.1016/j.ceramint.2016.02.082

    Article  CAS  Google Scholar 

  33. Z. Liu, X. Liu, L. Wei, C. Yu, J. Yi, H. Ji, Regulate the crystal and optoelectronic properties of Bi2WO6 nanosheet crystals by Sm3+ doping for superior visible-light-driven photocatalytic performance. Appl. Surf. Sci. 508, 145309 (2020). https://doi.org/10.1016/j.apsusc.2020.145309

    Article  CAS  Google Scholar 

  34. H. Li, W. Li, X. Liu, C. Ren, X. Miao, X. Li, Engineering of Gd/Er/Lu-triple-doped Bi2MoO6 to synergistically boost the photocatalytic performance in three different aspects: Oxidizability, light absorption and charge separation. Appl. Surf. Sci. 463, 556–565 (2019). https://doi.org/10.1016/j.apsusc.2018.08.254

    Article  CAS  Google Scholar 

  35. X. Zhang, M. Wang, X. Jia, K. Cao, M. Zhang, Synthesis and enhanced photocatalytic activity of rare earth ion Ce3+, Nd3+, Pr3+ or Sm3+) doped Bi2WO6 microspheres for rhodamine B degradation. ChemistrySelect 4, 12785–12793 (2019). https://doi.org/10.1002/slct.201903621

    Article  CAS  Google Scholar 

  36. X. Zhang, M. Zhang, K. Cao, Hydrothermal synthesis of Sm-doped Bi2WO6 flower-like microspheres for photocatalytic degradation of rhodamine B. CrystEngComm 21, 6208–6218 (2019). https://doi.org/10.1039/C9CE01043B

    Article  CAS  Google Scholar 

  37. H.A. Ahsaine, A. El Jaouhari, A. Slassi, M. Ezahri, A. Benlhachemi, B. Bakiz, F. Guinneton, J.R. Gavarric, Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. Rsc Adv. 6, 101105–101114 (2016). https://doi.org/10.1039/C6RA22669H

    Article  CAS  Google Scholar 

  38. H.A. Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, S. Villain, J.C. Valmalette, F. Guinneton, M. Arab, J.R. Gavarri, Structural, vibrational study and UV photoluminescence properties of the system Bi(2–x)Lu(x)WO6 (0.1 ≤ x ≤ 1). Rsc Adv. 5, 96242–96252 (2015). https://doi.org/10.1039/C5RA19424E

    Article  CAS  Google Scholar 

  39. C. Wang, C. Gu, T. Zeng, Q. Zhang, X. Luo, Bi2WO6 doped with rare earth ions: Preparation, characterization and photocatalytic activity under simulated solar irradiation. J Rare Earth. 39, 58–66 (2021). https://doi.org/10.1016/j.jre.2020.04.019

    Article  CAS  Google Scholar 

  40. X. Li, W. Li, S. Gu, X. Liu, H. Li, C. Ren, X. Ma, H. Zhou, Efficient ytterbium-doped Bi2WO6 photocatalysts: Synthesis, the formation of oxygen vacancies and boosted superoxide yield for enhanced visible-light photocatalytic activity. J. Alloy. Comp. 851, 156935 (2021). https://doi.org/10.1016/j.jallcom.2020.156935

    Article  CAS  Google Scholar 

  41. T. Tamiji, A. Nezamzadeh-Ejhieh, A comprehensive kinetic study on the electrocatalytic oxidation of propanols in aqueous solution. Solid State Sci. 98, 106033 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106033

    Article  CAS  Google Scholar 

  42. N. Tahmasebi, Z. Maleki, P. Farahnak, Enhanced photocatalytic activities of Bi2WO6/BiOCl composite synthesized by one-step hydrothermal method with the assistance of HCl. Mater. Sci. Semicond. Process 89, 32–40 (2019). https://doi.org/10.1016/j.mssp.2018.08.026

    Article  CAS  Google Scholar 

  43. L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma, Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 31, 1900546 (2019). https://doi.org/10.1002/adma.201900546

    Article  CAS  Google Scholar 

  44. Y. Shang, Y. Cui, R. Shi, P. Yang, Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity. Mater. Sci. Semicond. Process 89, 240–249 (2019). https://doi.org/10.1016/j.mssp.2018.09.026

    Article  CAS  Google Scholar 

  45. M. Liang, Z. Yang, Y. Yang, Y. Mei, H. Zhou, S. Yang, One-step introduction of metallic Bi and non-metallic C in Bi2WO6 with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 30, 1310–1321 (2018). https://doi.org/10.1007/s10854-018-0400-7

    Article  CAS  Google Scholar 

  46. J. Gurgul, M.T. Rinke, I. Schellenberg, R. Pöttgen, The antimonide oxides REZnSbO and REMnSbO (RE = Ce, Pr) - An XPS study. Solid State Sci. 17, 122–127 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.11.014

    Article  CAS  Google Scholar 

  47. C. Zheng, H. Yang, Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J. Mater. Sci. Mater. Electron. 29, 9291–9300 (2018). https://doi.org/10.1007/s10854-018-8959-6

    Article  CAS  Google Scholar 

  48. J. Di, C. Chen, C. Zhu, M. Ji, J. Xia, C. Yan, W. Hao, S. Li, H. Li, Z. Liu, Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution. Appl. Catal. B 238, 119–125 (2018). https://doi.org/10.1016/j.apcatb.2018.06.066

    Article  CAS  Google Scholar 

  49. T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102, 5845–5851 (1998). https://doi.org/10.1021/jp980922c

    Article  CAS  Google Scholar 

  50. J. Li, X. Yang, X. Yu, L. Xu, W. Kang, W. Yan, H. Gao, Z. Liu, Y. Guo, Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide. Appl. Surf. Sci. 255, 3731–3738 (2009). https://doi.org/10.1016/j.apsusc.2008.10.029

    Article  CAS  Google Scholar 

  51. Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater. 166, 138–143 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  52. P. Zhang, Y. Yi, C. Yu, W. Li, P. Liao, R. Tian, M. Zhou, Y. Zhou, B. Li, M. Fan, L. Dong, High photocatalytic activity of lanthanum doped Bi2MoO6 nanosheets with exposed (0 0 1) facets. J. Mater. Sci. Mater. Electron. 29, 8617–8629 (2018). https://doi.org/10.1007/s10854-018-8876-8

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Henan Provincial Department of Science and Technology Research Project (No. 182102311047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Excellent photocatalytic rhodamine B degradation for water remediation over Pr3+ doped Bi2WO6 microspheres. J IRAN CHEM SOC 19, 3029–3041 (2022). https://doi.org/10.1007/s13738-022-02511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02511-0

Keywords

Navigation