Skip to main content
Log in

Mechanistic insights of the adsorption of Eriochrome Black T by the formulated Mg–Al LDH-graphene oxide composite

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Adsorption is one of the best techniques to mitigate industrial dye pollution. In this study, surface of the Mg–Al layered double hydroxide (LDH) was modified with graphene oxide (GO) to improve its adsorption efficacy of Eriochrome Black T (EBT) dye molecules. A higher correlation coefficient value of the Langmuir adsorption model indicated monolayer adsorption of EBT at the active sites of Mg–Al LDH. The optimum adsorption potential was obtained around 0.4 and 1.4 mmol of EBT per g of the LDH and the modified LDH, respectively, and both adsorbents followed pseudo-second-order kinetics. Molecular dynamics study revealed that both GO and LDH contribute to adsorb EBT. Hydrogen bonds, such as C-H…O, O–H…N, O–H…O = S, O–H…N, and N = O…H–O-Al are the major contributing forces behind the adsorption. Besides, π…alkyl, Mg…O = S, π…cation, π…anion, π…donor, π…sigma, and π…lone pair of interactions are the additional contributing forces behind the enhancement of the efficacy of the modified composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Christie, Environmental aspects of textile dyeing (2007). https://doi.org/10.1533/9781845693091

    Article  Google Scholar 

  2. A. Khaleque, D.K. Roy, Removing reactive dyes from textile effluent using banana fibre. Int. J. Basic Appl. Sci. 16, 14–20 (2016)

    Google Scholar 

  3. S. Afshin, Y. Rashtbari, M. Vosoughi, R. Rehman, B. Ramavandi, A. Behzad, L. Mitu, Removal of basic blue-41 dye from water by stabilized magnetic iron nanoparticles on clinoptilolite zeolite. Rev. Chim. 71(2), 218–229 (2020)

    Article  CAS  Google Scholar 

  4. G. Samchetshabam, A. Hussan, T.G. Choudhury, Impact of textile dyes waste on aquatic environments and its treatment impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol. 35, 2349–2353 (2017)

    Google Scholar 

  5. N. Mathur, P. Bhatnagar, P. Nagar, M.K. Bijarnia, Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipur (India): A case study. Ecotoxicol. Environ. Saf. 61, 105–113 (2005). https://doi.org/10.1016/j.ecoenv.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  6. K.R. Mahbub, B. Morium, M.M. Ahmed, M.A. Akond, S. Andrews, Decolourization of novacron blue and novacron super black azo dyes by <I>Bacillus</I> spp isolated from textile effluents in Bangladesh. J. Sci. Res. 7, 45–53 (2015). https://doi.org/10.3329/jsr.v7i1-2.18682

    Article  CAS  Google Scholar 

  7. S. Afshin, Y. Rashtbari, M. Shirmardi, M. Vosoughi, A. Hamzehzadeh, Adsorption of basic violet 16 dye from aqueous solution onto mucilaginous seeds of salvia sclarea: kinetics and isotherms studies. Desalin. Water Treat. 161, 365–375 (2019)

    Article  CAS  Google Scholar 

  8. R.S. Blackburn, Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. (2004). https://doi.org/10.1021/es049972n

    Article  PubMed  Google Scholar 

  9. S. Chakraborty, M.K. Purkait, S. DasGupta, S. De, J.K. Basu, Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep. Purif. Technol. 31, 141–151 (2003). https://doi.org/10.1016/S1383-5866(02)00177-6

    Article  CAS  Google Scholar 

  10. Y. Zheng, B. Cheng, J. Fan, J. Yu, W. Ho, Review on nickel-based adsorption materials for Congo red. J. Hazard. Mater. 403, 123559 (2021). https://doi.org/10.1016/j.jhazmat.2020.123559

    Article  CAS  PubMed  Google Scholar 

  11. G. Hatui, G.C. Nayak, G. Udayabhanu, One pot solvothermal synthesis of sandwich-like Mg Al layered double hydroxide anchored Reduced Graphene Oxide: an excellent electrode material for Supercapacitor. Electrochim. Acta. 219, 214–226 (2016). https://doi.org/10.1016/j.electacta.2016.09.152

    Article  CAS  Google Scholar 

  12. M.T. Rahman, T. Kameda, T. Miura, S. Kumagai, T. Yoshioka, Application of Mg–Al layered double hydroxide for treating acidic mine wastewater: a novel approach to sludge reduction. Chem. Ecol. 35, 128–142 (2019). https://doi.org/10.1080/02757540.2018.1534964

    Article  CAS  Google Scholar 

  13. M.T. Rahman, T. Kameda, S. Kumagai, T. Yoshioka, A novel method to delaminate nitrate-intercalated Mg–Al layered double hydroxides in water and application in heavy metals removal from waste water. Chemosphere 203, 281–290 (2018). https://doi.org/10.1016/j.chemosphere.2018.03.166

    Article  CAS  PubMed  Google Scholar 

  14. F. Li, X. Duan Applications of layered double hydroxides, in: Layer. Double Hydroxides, 1st ed., Springer, Berlin, 2006: pp. 193–223.

  15. S. Boubakri, M.A. Djebbi, Z. Bouaziz, P. Namour, N. Jaffrezic-Renault, A.B.H. Amara, M. Trabelsi-Ayadi, I. Ghorbel-Abid, R. Kalfat, Removal of two anionic reactive textile dyes by adsorption into MgAl-layered double hydroxide in aqueous solutions. Environ. Sci. Pollut. Res. 25, 23817–23832 (2018). https://doi.org/10.1007/s11356-018-2391-6

    Article  CAS  Google Scholar 

  16. F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today. 11, 173–301 (1991). https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  17. Q. Wang, D. Ohare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012). https://doi.org/10.1021/cr200434v

    Article  CAS  PubMed  Google Scholar 

  18. M.T. Rahman, T. Kameda, S. Kumagai, T. Yoshioka, Effectiveness of Mg–Al-layered double hydroxide for heavy metal removal from mine wastewater and sludge volume reduction. Int. J. Environ. Sci. Technol. 15, 263–272 (2018). https://doi.org/10.1007/s13762-017-1385-0

    Article  CAS  Google Scholar 

  19. K. Grover, S. Komarneni, H. Katsuki, Uptake of arsenite by synthetic layered double hydroxides. Water Res. 43, 3884–3890 (2009). https://doi.org/10.1016/j.watres.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  20. T. Kameda, M. Nakamura, T. Yoshioka, Removal of antimonate ions from an aqueous solution by anion exchange with magnesium - Aluminum layered double hydroxide and the formation of a brandholzite-like structure. J. Environ. Sci. Heal-Part A Toxic/Hazardous Subst. Environ. Eng (2012). https://doi.org/10.1080/10934529.2012.668121

    Article  Google Scholar 

  21. J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan, Preparation of layered double hydroxides, in: Layer. Double Hydroxides, 1st ed., Springer Berlin Heidelberg, Berlin, 2006: pp. 89–119.

  22. A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites. Elsevier (2018). https://doi.org/10.1016/b978-0-08-101975-7.00005-1

    Article  Google Scholar 

  23. P. Sivakumar, P.N. Palanisamy, Adsorption studies of Basic Red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L. Int. J. ChemTech Res. 1, 502–510 (2009)

    CAS  Google Scholar 

  24. G.K. Ramesha, A. Vijaya Kumara, H.B. Muralidhara, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 361, 270–277 (2011)

    Article  CAS  Google Scholar 

  25. A.K. Geim, K.S. Novoselov, The rise of grapheme. Nanosci Technol A Collect Rev from Nat Journals (2009). https://doi.org/10.1142/9789814287005_0002

    Article  Google Scholar 

  26. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009). https://doi.org/10.1038/nnano.2009.58

    Article  CAS  PubMed  Google Scholar 

  27. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  PubMed  Google Scholar 

  28. G.B.B. Varadwaj, O.A. Oyetade, S. Rana, B.S. Martincigh, S.B. Jonnalagadda, V.O. Nyamori, Facile synthesis of three-dimensional Mg-Al layered double hydroxide/partially reduced graphene oxide nanocomposites for the effective removal of Pb2+ from aqueous solution. ACS Appl. Mater. Interfaces. 9, 17290–17305 (2017). https://doi.org/10.1021/acsami.6b16528

    Article  CAS  PubMed  Google Scholar 

  29. J. Bu, L. Yuan, Y. Ren, Y. Lv, Y. Meng, X. Peng, Enhanced removal of eriochrome black T in wastewater by zirconium-based MOF/graphene oxide. Can. J. Chem. 98, 90–97 (2020). https://doi.org/10.1139/cjc-2019-0368

    Article  CAS  Google Scholar 

  30. C.R. Minitha, M. Lalitha, Y.L. Jeyachandran, L. Senthilkumar, R.T. Rajendra Kumar, Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π – π interactions. Mater Chem Phys (2017). https://doi.org/10.1016/j.matchemphys.2017.03.048

    Article  Google Scholar 

  31. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124 (1998). https://doi.org/10.1016/S1385-8947(98)00076-X

    Article  CAS  Google Scholar 

  32. A. Ali, M.S. Rahman, R. Roy, P. Gambill, D.E. Raynie, M.A. Halim, Structure elucidation of menthol-based deep eutectic solvent using experimental and computational techniques. J. Phys. Chem. A. (2021). https://doi.org/10.1021/acs.jpca.0c10735

    Article  PubMed  Google Scholar 

  33. M. Saha, M.S. Rahman, M.N. Hossain, D.E. Raynie, M.A. Halim, M.A. Halim, Molecular and spectroscopic insights of a choline chloride based therapeutic deep eutectic solvent. J. Phys. Chem. A. 124, 4690–4699 (2020). https://doi.org/10.1021/acs.jpca.0c00851

    Article  CAS  PubMed  Google Scholar 

  34. L. Dhar, S. Hossain, M.S. Rahman, S.B. Quraishi, K. Saha, F. Rahman, M.T. Rahman, Adsorption mechanism of methylene blue by graphene oxide shielded Mg-Al layered double hydroxide from synthetic wastewater. J. Phys. Chem. A. 125, 954–965 (2021). https://doi.org/10.1021/acs.jpca.0c09124

    Article  CAS  PubMed  Google Scholar 

  35. S. Weber, N. Modeler, JCrystalSoft (California, USA, 2005)

    Google Scholar 

  36. D.J. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenber, Gaussian 09 A.02, Gaussian, Inc. Wallingford CT. (2009). 111.

  37. M.S. Rahman, S.M. Hossain, M.T. Rahman, M. Kabir, Analysis of iron, scandium, samarium, and zinc in commercial fertilizers and the chemistry behind the stability of these metals in the fertilizers. J. Agric. Chem. Environ. (2019). https://doi.org/10.4236/jacen.2019.83013

    Article  Google Scholar 

  38. S. Kim, P.A. Thiessen, T. Cheng, B. Yu, E.E. Bolton, An update on PUG-REST: RESTful interface for programmatic access to PubChem. Nucleic Acids Res (2018). https://doi.org/10.1093/nar/gky294

    Article  PubMed  PubMed Central  Google Scholar 

  39. E. Krieger, R.L. Dunbrack, R.W.W. Hooft, B. Krieger, Assignment of protonation states in proteins and ligands: combining pK a prediction with hydrogen bonding network optimization. Methods Mol. Biol. (2012). https://doi.org/10.1007/978-1-61779-465-0_25

    Article  PubMed  Google Scholar 

  40. E. Krieger, J.E. Nielsen, C.A.E.M. Spronk, G. Vriend, Fast empirical pKa prediction by Ewald summation. J. Mol. Graph. Model. 25, 481–486 (2006). https://doi.org/10.1016/j.jmgm.2006.02.009

    Article  CAS  PubMed  Google Scholar 

  41. E. Krieger, G. Vriend, New ways to boost molecular dynamics simulations. J. Comput. Chem. 36, 996–1007 (2015). https://doi.org/10.1002/jcc.23899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. BIOVIADassault Systèmes, Discovery Studio Modeling Environment, in: Dassault Systèmes, San Diego, 2017.

Download references

Acknowledgements

The authors are grateful to Dr. Mohammad A. Halim, CEO of The Red-Green Research Centre, Bangladesh and Assistant professor at the University of Arkansas-Fort Smith, USA for providing the access to use their Gaussian 09 software facility to model the composite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Tamzid Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, L., Rahman, M.S., Hossain, S. et al. Mechanistic insights of the adsorption of Eriochrome Black T by the formulated Mg–Al LDH-graphene oxide composite. J IRAN CHEM SOC 19, 1319–1328 (2022). https://doi.org/10.1007/s13738-021-02380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02380-z

Keywords

Navigation