Skip to main content
Log in

Non-equilibrium modeling of CO2 reactive-absorption process using sodium hydroxide–ammonia–water solution in a packed bed column

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, CO2 reactive-absorption process is modeled into the NaOH-NH3-H2O solution in an absorption column. A non-equilibrium or rate-based model is used to simulate the process performance, and the predicted results are compared with the experimental data. In this model, the steady and nonlinear film models are utilized for high and low solubility components, respectively. The average relative deviation (ARD%) is decreased from 9.73 to 4.36 by increasing the number of column stages from 20 to 60 in the simulation. On the other hand, the predicted values by the film and enhancement factor models are compared, and it was concluded that the film model was more accurate than the other. The effects of axial position through the column and initial NaOH concentration on the liquid flow rate, mole fraction of components, and temperature of the gas and liquid phases are also investigated. As a main result, the temperature of the liquid phase and the CO2 concentration in the liquid phase decrease by increasing the axial position through the column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a I :

Area of interface per unit volume (m2.m3)

a n :

A function in analytical solution

A :

Surface area of column (m2)

A I :

Surface area of interface (m2)

A eff :

Effective area of packing (m2)

A t :

Packing area (m2)

ARD :

Average Relative Deviation (%)

C :

Concentration (mol.m3)

D :

Diffusion coefficient (m2.s1)

E :

Enhancement factor of mass transfer

\(\overline{E}\) :

Heat transfer rate (N.m.s1)

F :

A function in analytical solution

F V :

Gas capacity factor (Pa0.5)

g :

Gravity acceleration (m.s2)

G :

Gas flow rate (mol.s1)

h f :

Heat transfer coefficient of each phases (W.m2.K1)

h L :

Holdup

h L,S :

Holdup at loading point

H :

Column height (m)

\(\overline{H}_{i}^{f}\) :

Partial molar enthalpy of component i in the solution (N.m.mol1)

k :

Mass transfer coefficient (m.s1)

k i :

Reaction rate constant (s1)

K :

Chemical equilibrium constant

K W :

Wall factor

L :

Liquid flow rate (mol.s1)

M :

Mole number (mole)

N :

Mole flux (mol.m2.s1)

\(\overline{N}\) :

Mole rate (mol.s1)

q n :

A function in analytical solution

\(\dot{Q}\) :

Input (or output) heat transfer rate (N.m.s1)

r :

Reaction rate

R :

Universal gas constant (m3⋅Pa⋅K−1⋅mol−1)

RD :

Relative Deviation (%)

Re :

Reynolds number

t :

Time (s)

T :

Temperature (K)

u :

Velocity (m.s1)

x, y :

Mole fraction

X :

Parameter

z :

Axial direction of column height

ρ :

Density (g.m3)

μ :

Viscosity (g.m1.s1)

Δz :

Height of each stage (m)

σ :

Surface tension (N.m1)

ψ :

Resistance coefficient

ξ :

Variable

L :

Liquid

G :

Gas

s :

Column number

I :

Interface

i :

Component

Exp:

Experimental

Cal:

Calculation

References

  1. E.Y. Kenig, L. Kucka, A. Górak, Rigorous modeling of reactive absorption processes. Chem Eng Technol: Ind Chem-Plant Equip Process Eng-Biotechnol 26(6), 631–646 (2003)

    Article  CAS  Google Scholar 

  2. E. Etemad, A. Ghaemi, M. Shirvani, Rigorous correlation for CO2 mass transfer flux in reactive absorption processes. Int. J. Greenhouse Gas Control 42, 288–295 (2015)

    Article  CAS  Google Scholar 

  3. J. Hu, X. Yang, J. Yu, G. Dai, Carbon dioxide (CO2) absorption and interfacial mass transfer across vertically confined free liquid film-a numerical investigation. Chem. Eng. Process. 111, 46–56 (2017)

    Article  CAS  Google Scholar 

  4. A. Ghaemi, A.H. Behroozi, H. Mashhadimoslem, Mass Transfer Flux of CO2 into Methyldiethanolamine Solution in a Reactive-Absorption Process. Chem. Eng. Technol. 43(10), 2083–2091 (2020)

    Article  CAS  Google Scholar 

  5. M. Leimbrink, S. Tlatlik, S. Salmon, A.-K. Kunze, T. Limberg, R. Spitzer, A. Gottschalk, A. Górak, M. Skiborowski, Pilot scale testing and modeling of enzymatic reactive absorption in packed columns for CO2 capture. Int. J. Greenhouse Gas Control 62, 100–112 (2017)

    Article  CAS  Google Scholar 

  6. J. Mackowiak, K. Syring, A. Thomas, M. Leimbrink, M. Skiborowski, A. Gorak, J. Mackowiak, Absorption of carbon dioxide using enzyme activated amine solution in columns with random Packings. Chem. Eng. Trans. 69, 115–120 (2018)

    Google Scholar 

  7. R.E. Treybal, Mass Transfer Operations (McGraw Hill, New York, 1980), p. 466

    Google Scholar 

  8. W.L. McCabe, J.C. Smith, P. Harriott, Unit Operations of Chemical Engineering, vol. 1130 (McGraw-hill, New York, 1993).

    Google Scholar 

  9. R. Schneider, F. Sander, A. Gorak, Dynamic simulation of industrial reactive absorption processes. Chem. Eng. Process. 42(12), 955–964 (2003)

    Article  CAS  Google Scholar 

  10. E. Kenig, Complementary modelling of fluid separation processes. Chem. Eng. Res. Des. 86(9), 1059–1072 (2008)

    Article  CAS  Google Scholar 

  11. P. Mores, N. Scenna, S. Mussati, Post-combustion CO2 capture process: equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution. Chem. Eng. Res. Des. 89(9), 1587–1599 (2011)

    Article  CAS  Google Scholar 

  12. S. Na, S.J. Hwang, H. Kim, I.-H. Baek, K.S. Lee, Modeling of CO2 solubility of an aqueous polyamine solvent for CO2 capture. Chem. Eng. Sci. 204, 140–150 (2019)

    Article  CAS  Google Scholar 

  13. X. Lu, P. Xie, D. Ingham, L. Ma, M. Pourkashanian, Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chem. Eng. Sci. 199, 302–318 (2019)

    Article  CAS  Google Scholar 

  14. M. Klöker, E.Y. Kenig, A. Hoffmann, P. Kreis, A. Górak, Rate-based modelling and simulation of reactive separations in gas/vapour–liquid systems. Chem. Eng. Process. 44(6), 617–629 (2005)

    Article  Google Scholar 

  15. H. Niknafs, A. Ghaemi, S. Shahhosseini, Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process. Heat Mass Transf. 51(8), 1131–1140 (2015)

    Article  CAS  Google Scholar 

  16. A. Ghaemi, S. Shahhosseini, M.G. Maragheh, Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chem. Eng. J. 149(1–3), 110–117 (2009)

    Article  CAS  Google Scholar 

  17. A. Ghaemi, M. Torab-Mostaedi, M.G. Maragheh, S. Shahhosseini, Kinetics and absorption rate of CO2 into partially carbonated ammonia solutions. Chem. Eng. Commun. 198(10), 1169–1181 (2011)

    Article  CAS  Google Scholar 

  18. G. Pellegrini, R. Strube, G. Manfrida, Comparative study of chemical absorbents in postcombustion CO2 capture. Energy 35(2), 851–857 (2010)

    Article  CAS  Google Scholar 

  19. S. Norouzbahari, S. Shahhosseini, A. Ghaemi, Chemical absorption of CO2 into an aqueous piperazine (PZ) solution: development and validation of a rigorous dynamic rate-based model. RSC Adv 6(46), 40017–40032 (2016)

    Article  CAS  Google Scholar 

  20. L. Li, W. Conway, R. Burns, M. Maeder, G. Puxty, S. Clifford, H. Yu, Investigation of metal ion additives on the suppression of ammonia loss and CO2 absorption kinetics of aqueous ammonia-based CO2 capture. Int. J. Greenhouse Gas Control 56, 165–172 (2017)

    Article  CAS  Google Scholar 

  21. M. Krauβ, R. Rzehak, Reactive absorption of CO2 in NaOH: detailed study of enhancement factor models. Chem. Eng. Sci. 166, 193–209 (2017)

    Article  Google Scholar 

  22. L. Prentza, I. Koronaki, M. Nitsas, Investigating the performance and thermodynamic efficiency of CO2 reactive absorption–A solvent comparison study. Thermal Sci Eng Progress 7, 33–44 (2018)

    Article  Google Scholar 

  23. A. Ghaemi, M. Torab-Mostaedi, M.G. Maragheh, Nonequilibrium dynamic modeling of simultaneous reactive absorption of gases. J Taiwan Inst Chem Eng 42(1), 173–179 (2011)

    Article  CAS  Google Scholar 

  24. M.S. Walters, T.F. Edgar, G.T. Rochelle, Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture. Chem. Eng. Process. 107, 1–10 (2016)

    Article  CAS  Google Scholar 

  25. M.Z. Shahid, A.S. Maulud, M.A. Bustam, H. Suleman, H.N.A. Halim, A.M. Shariff, Rate-based modeling for packed absorption column of the MEA–CO2–water system at high-pressure and High-CO2 loading conditions. Ind. Eng. Chem. Res. 58(27), 12235–12246 (2019)

    Article  CAS  Google Scholar 

  26. M. Amirkhosrow, E.N. Lay, Simulation model evaluation of desorber column in CO2 capture process by MEA scrubbing: a rigorous rate-based model for kinetic model and mass transfer correlations analysis. Fuel Process. Technol. 203, 106390 (2020)

    Article  CAS  Google Scholar 

  27. L.A. López-Bautista, A. Flores-Tlacuahuac, Optimization of the amines-CO2 capture process by a nonequilibrium rate-based modeling approach. AIChE J. 66(6), e16978 (2020)

    Article  Google Scholar 

  28. C. Noeres, E. Kenig, A. Górak, Modelling of reactive separation processes: reactive absorption and reactive distillation. Chem. Eng. Process. 42(3), 157–178 (2003)

    Article  CAS  Google Scholar 

  29. G. Astarita, Mass transfer with chemical reaction, (Amsterdam, London, Elsevier, 1967)

    Google Scholar 

  30. L. Kucka, I. Müller, E.Y. Kenig, A. Górak, On the modelling and simulation of sour gas absorption by aqueous amine solutions. Chem. Eng. Sci. 58(16), 3571–3578 (2003)

    Article  CAS  Google Scholar 

  31. E.J. Henley, J.D. Seader, D.K. Roper, Separation process principles. Wiley Hirt, CW BD Nichols Volume of fluid method for the dynamics of free boundaries. J Comput Phys 39(1), 201–225 (2011)

    Google Scholar 

  32. P. Danckwerts, Gas-Liquid Reactions (McGraw-Hill Book Company, London, UK, 1970).

    Book  Google Scholar 

  33. O. Brettschneider, R. Thiele, R. Faber, H. Thielert, G. Wozny, Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3–CO2–H2S–NaOH–H2O. Sep. Purif. Technol. 39(3), 139–159 (2004)

    Article  CAS  Google Scholar 

  34. E. Kenig, F. Butzmann, L. Kucka, A. Górak, Comparison of numerical and analytical solutions of a multicomponent reaction-mass-transfer problem in terms of the film model. Chem. Eng. Sci. 55(8), 1483–1496 (2000)

    Article  CAS  Google Scholar 

  35. A. Ghaemi, V. Hashemzadeh, S. Shahhosseini, An Experimental investigation of reactive absorption of carbon dioxide into an aqueous NH3/H2O/NaOH Solution. Iran. J. Oil Gas Sci. Technol. 6(3), 55–67 (2017)

    Google Scholar 

  36. C.M. Criss, F.J. Millero, Modeling heat capacities of high valence-type electrolyte solutions with Pitzer’s equations. J. Solution Chem. 28(7), 849–864 (1999)

    Article  CAS  Google Scholar 

  37. K.S. Pitzer, R. Curl Jr., The Volumetric and Thermodynamic Properties of Fluids: III. Empirical Equation for the Second Virial Coefficient, in Molecular Structure And Statistical Thermodynamics: Selected Papers of Kenneth S Pitzer. ed. by K. Pitzer (World Scientific, Singapore, 1993), pp. 311–312

    Chapter  Google Scholar 

  38. R.C. Reid, J.M. Prausnitz, B.E. Poling, Properties of gases and liquids, (McGraw-Hill, New York, 1987)

    Google Scholar 

  39. K. Onda, H. Takeuchi, Y. Okumoto, Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Jpn. 1(1), 56–62 (1968)

    Article  CAS  Google Scholar 

  40. R. Billet, M. Schultes, Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes. Chem. Eng. Res. Des. 77(6), 498–504 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahad Ghaemi or Alireza Hemmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaemi, A., Hemmati, A. & Mashhadimoslem, H. Non-equilibrium modeling of CO2 reactive-absorption process using sodium hydroxide–ammonia–water solution in a packed bed column. J IRAN CHEM SOC 18, 2303–2314 (2021). https://doi.org/10.1007/s13738-021-02190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02190-3

Keywords

Navigation