Skip to main content
Log in

Sensitive detection of colchicine at a glassy carbon electrode modified with magnetic ionic liquid/CuO nanoparticles/carbon nanofibers in pharmaceutical and plasma samples

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, we utilized a novel electrochemical sensor for the determination of colchicine in 0.1 M phosphate buffer solution (pH 4.0) using differential pulse voltammetry. 1-butyl-3-methylimidazolium tetrachloroferrate ([Bmim]FeCl4) was synthesized, investigated by FT-IR, Raman and UV–Vis spectrometer and applied as magnetic ionic liquid in electrode modification. The other modifier was copper oxide nanoparticles/carbon nanofiber composite (CuO/CNF) provided by electrospinning and evaluated by scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). Several electro-analytical parameters such as the electrochemical behavior of the modified electrode, scan rate, type and supporting electrolyte pH were studied for the determination of colchicine. Under the optimized experimental conditions, oxidative peak current increased linearly by increasing colchicine concentration in the range of 1.0 to 100.0 nM and detection limit was obtained 0.25 nM. The relative standard deviation for six replicate analyses of 20.0 nM and 58.0 nM colchicine solution was obtained to be ± 3.17% and ± 2.08%, respectively. The proposed electrochemical sensor was successfully applied for colchicine quantification in colchicine tablet and health human plasma with satisfying results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. A. Alamgir, Secondary metabolites: secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles, therapeutic use of medicinal plants and their extracts, vol. 2 (Springer, Berlin, 2018), pp. 165–309

    Google Scholar 

  2. D.M. Stanković, Ľ. Švorc, J.F. Mariano, A. Ortner, K. Kalcher, Electrochemical determination of natural drug colchicine in pharmaceuticals and human serum sample and its interaction with DNA. Electroanalysis 29(10), 2276–2281 (2017)

    Article  CAS  Google Scholar 

  3. A. Slobodnick, B. Shah, M.H. Pillinger, S. Krasnokutsky, Colchicine: old and new. Am. J. Med. 128(5), 461–470 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. A. Mandhare, P. Banerjee, Therapeutic use of colchicine and its derivatives: a patent review. Expert Opin. Ther. Pat. 26(10), 1157–1174 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. M. Akodad, B. Lattuca, N. Nagot, V. Georgescu, M. Buisson, J.-P. Cristol, F. Leclercq, J.-C. Macia, R. Gervasoni, T.-T. Cung, COLIN trial: value of colchicine in the treatment of patients with acute myocardial infarction and inflammatory response. Arch. Cardiovasc. Dis. 110(6–7), 395–402 (2017)

    Article  PubMed  Google Scholar 

  6. G.J. Martínez, D.S. Celermajer, S. Patel, The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis 269, 262–271 (2018)

    Article  PubMed  CAS  Google Scholar 

  7. A.J. Stevenson, E.I. Ager, M.A. Proctor, D. Škalamera, A. Heaton, D. Brown, B.G. Gabrielli, Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo. Sci. Rep. 8(1), 5144 (2018)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. L. Liu, W. Zhang, L. Li, X. Zhu, J. Liu, X. Wang, Z. Song, H. Xu, Z. Wang, Biomechanical measurement and analysis of colchicine-induced effects on cells by nanoindentation using an atomic force microscope. J. Biomech. 67, 84–90 (2018)

    Article  PubMed  Google Scholar 

  9. D.A. Vrachatis, G. Giannopoulos, S.G. Deftereos, Colchicine: conventional and contemporary indications. Curr. Pharm. Des. 24(6), 647 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. T. Hennessy, L. Soh, M. Bowman, R. Kurup, C. Schultz, S. Patel, G.S. Hillis, The low dose colchicine after myocardial infarction (LoDoCo-MI) study: a pilot randomized placebo controlled trial of colchicine following acute myocardial infarction. Am. Heart J. 215, 62–69 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. M. Fu, J. Zhao, Z. Li, H. Zhao, A. Lu, Clinical outcomes after colchicine overdose: a case report. Medicine 98(30), e16580 (2019). https://doi.org/10.1097/MD.0000000000016580

    Article  PubMed  PubMed Central  Google Scholar 

  12. W. Zhang, Q.-M. Zhou, G.-H. Du, Colchicine, natural small molecule drugs from plants (Springer, Berlin, 2018), pp. 503–507

    Book  Google Scholar 

  13. M.R. Scipione, J. Papadopoulos, Pharmacokinetics and pharmacodynamics of antiviral drugs in special population, principles and practice of transplant infectious diseases (Springer, Berlin, 2019), pp. 977–1001

    Google Scholar 

  14. I. van Echteld, M.D. Wechalekar, N. Schlesinger, R. Buchbinder, D. Aletaha, Colchicine for acute gout. Cochrane Database Syst. Rev. 15(8), CD006190 (2014). https://doi.org/10.1002/14651858.CD006190.pub2

    Article  Google Scholar 

  15. D.A. Moreira, F.M.D. Oliveira, D.M. Pimentel, T.J. Guedes, R. Luz, F.S. Damos, A.C. Pereira, R.A. da Silva, W.T. dos Santos, Determination of colchicine in pharmaceutical formulations and urine by multiple-pulse amperometric detection in an FIA system using boron-doped diamond electrode. J. Braz Chem. Soc. 29(9), 1796–1802 (2018)

    CAS  Google Scholar 

  16. N. Çankaya, İ. Bulduk, A.M. Çolak, Extraction, development and validation of HPLC-UV method for rapid and sensitive determination of colchicine from Colchicum autumnale L. Bulbs. Saudi J. Biol. Sci. 26, 345–351 (2018)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. S. Bahrani, M. Ghaedi, K. Dashtian, A. Ostovan, M.J.K. Mansoorkhani, A. Salehi, MOF-5(Zn)-Fe2O4 nanocomposite based magnetic solid-phase microextraction followed by HPLC-UV for efficient enrichment of colchicine in root of colchicium extracts and plasma samples. J. Chromatogr. B 1067, 45–52 (2017)

    Article  CAS  Google Scholar 

  18. S.A. Joshi, S.S. Jalalpure, A.A. Kempwade, M.R. Peram, Development and validation of HPLC method to determine colchicine in pharmaceutical formulations and its application for analysis of solid lipid nanoparticles. Curr. Pharm. Anal. 14(1), 76–83 (2018)

    CAS  Google Scholar 

  19. I. Capistrano, T. Naessens, L. Pieters, S. Apers, An HPLC method for the quantification of colchicine and colchicine derivatives in gloriosa superba seeds. Nat. Prod. Commun. 12, 1215–1221 (2017)

    Google Scholar 

  20. E. Abe, A.-S. Lemaire-Hurtel, C. Duverneuil, I. Etting, E. Guillot, P. de Mazancourt, J.-C. Alvarez, A novel LC-ESI-MS-MS method for sensitive quantification of colchicine in human plasma: application to two case reports. J. Anal. Toxicol. 30(3), 210–215 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. S.W. Ng, C.K. Ching, A.Y.W. Chan, T.W.L. Mak, Simultaneous detection of 22 toxic plant alkaloids (aconitum alkaloids, solanaceous tropane alkaloids, sophora alkaloids, strychnos alkaloids and colchicine) in human urine and herbal samples using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 942, 63–69 (2013)

    Article  CAS  Google Scholar 

  22. M. Afzali, A. Mostafavi, T. Shamspur, Decoration of graphene oxide with NiO@ polypyrrole core-shell nanoparticles for the sensitive and selective electrochemical determination of piceatannol in grape skin and urine samples. Talanta 196, 92–99 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H. Ehrlich, Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J. Electroanal. Chem. 823, 61–66 (2018)

    Article  CAS  Google Scholar 

  24. L. El Harrad, I. Bourais, H. Mohammadi, A. Amine, Recent advances in electrochemical biosensors based on enzyme inhibition for clinical and pharmaceutical applications. Sensors 18(1), 164 (2018)

    Article  CAS  Google Scholar 

  25. M. Afzali, A. Mostafavi, T. Shamspur, Designing an Au/reduced graphene oxide modified carbon paste electrode for the electrochemical quantification of agnuside. Sens. Actuators B Chem. 290, 188–194 (2019)

    Article  CAS  Google Scholar 

  26. H. Bai, C. Wang, J. Chen, Z. Li, K. Fu, Q. Cao, Graphene@ AuNPs modified molecularly imprinted electrochemical sensor for the determination of colchicine in pharmaceuticals and serum. J. Electroanal. Chem. 816, 7–13 (2018)

    Article  CAS  Google Scholar 

  27. Z. Jahromi, A. Mostafavi, T. Shamspur, M. Mohamadim, Magnetic ionic liquid assisted single-drop microextraction of ascorbic acid before its voltammetric determination. J. Sep. Sci. 40(20), 4041–4049 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Jahromi, T. Shamspur, A. Mostafavi, M. Mohamadi, Separation and preconcentration of hemin from serum samples followed by voltammetric determination. J. Mol. Liq. 242, 91–97 (2017)

    Article  CAS  Google Scholar 

  29. T.E. Sintra, M. Nasirpour, F. Siopa, A.A. Rosatella, F. Gonçalves, J.A. Coutinho, C.A. Afonso, S.P. Ventura, Ecotoxicological evaluation of magnetic ionic liquids. Ecotoxicol. Environ. Saf. 143, 315–321 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. K.T. Greeson, N.G. Hall, N.D. Redeker, J.C. Marcischak, L.V. Gilmore, J.A. Boatz, T.C. Le, J.R. Alston, A.J. Guenthner, K.B. Ghiassi, Synthesis and properties of symmetrical N, N′-bis (alkyl) imidazolium bromotrichloroferrate (III) paramagnetic, room temperature ionic liquids with high short-term thermal stability. J. Mol. Liq. 265, 701–710 (2018)

    Article  CAS  Google Scholar 

  31. K.D. Clark, O. Nacham, J.A. Purslow, S.A. Pierson, J.L. Anderson, Magnetic ionic liquids in analytical chemistry: a review. Anal. Chim. Acta 934, 9–21 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. M.N. Emaus, K.D. Clark, P. Hinners, J.L. Anderson, Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification. Anal. Bioanal. Chem. 410, 1–10 (2018)

    Article  CAS  Google Scholar 

  33. Z.L. Xie, D.S. Su, Ionic liquid based approaches to carbon materials synthesis. Eur. J. Inorg. Chem. 2015(7), 1137–1147 (2015)

    Article  CAS  Google Scholar 

  34. R. Zhuang, F. Jian, K. Wang, A new binuclear Cd (II)-containing ionic liquid: preparation and electrocatalytic activities. J. Organomet. Chem. 694(22), 3614–3618 (2009)

    Article  CAS  Google Scholar 

  35. H. Wang, R. Yan, Z. Li, X. Zhang, S. Zhang, Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly (ethylene terephthalate). Catal. Commun. 11(8), 763–767 (2010)

    Article  CAS  Google Scholar 

  36. Q. Zhao, H. Xie, H. Ning, J. Liu, H. Zhang, L. Wang, X. Wang, Y. Zhu, S. Li, M. Wu, Intercalating petroleum asphalt into electrospun ZnO/carbon nanofibers as enhanced free-standing anode for lithium-ion batteries. J. Alloy Compd. 737, 330–336 (2018)

    Article  CAS  Google Scholar 

  37. L.A. Mercante, A. Pavinatto, L.E. Iwaki, V.P. Scagion, V. Zucolotto, O.N. Oliveira Jr., L.H. Mattoso, D.S. Correa, Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl. Mater. Interfaces 7(8), 4784–4790 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. M. Afzali, Z. Jahromi, R. Nekooie, Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchem. J. 145, 373–379 (2019)

    Article  CAS  Google Scholar 

  39. J. Ping, S. Ru, K. Fan, J. Wu, Y. Ying, Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim. Acta 171(1–2), 117–123 (2010)

    Article  CAS  Google Scholar 

  40. S. Peng, L. Li, J.K.Y. Lee, L. Tian, M. Srinivasan, S. Adams, S. Ramakrishna, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 361–395 (2016)

    Article  CAS  Google Scholar 

  41. Q. Gao, Z. Yuan, L. Dong, G. Wang, X. Yu, Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries. Electrochim. Acta 270, 417–425 (2018)

    Article  CAS  Google Scholar 

  42. G. Qiao, L. Zhang, F. Qiao, L. Dai, Methods of treating and preventing gout and lead nephropathy, Google Patents (2018)

  43. P.K. Kalambate, C.R. Rawool, S.P. Karna, A.K. Srivastava, Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode. Mater. Sci. Eng. C 69, 453–461 (2016)

    Article  CAS  Google Scholar 

  44. M. Roushani, B.Z. Dizajdizi, A. Salimi, A. Azadbakht, Preparation of modified glassy carbon electrode by the use of titanium oxide, copper and palladium nanoparticles and its application for the electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. J. Mater. Sci. Mater. Electron. 30(5), 5212–5221 (2019)

    Article  CAS  Google Scholar 

  45. M. Roushani, B.Z. Dizajdizi, Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. Catal. Commun. 69, 133–137 (2015)

    Article  CAS  Google Scholar 

  46. M. Roushani, K. Bakyas, B.Z. Dizajdizi, Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C60-Cs-IL nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 64, 54–60 (2016)

    Article  CAS  Google Scholar 

  47. D. Ye, G. Liang, H. Li, J. Luo, S. Zhang, H. Chen, J. Kong, A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223–230 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. J. Song, L. Xu, C. Zhou, R. Xing, Q. Dai, D. Liu, H. Song, Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl. Mater. Interfaces 5(24), 12928–12934 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. S. Alim, A. Kafi, R. Jose, M.M. Yusoff, J. Vejayan, Enhanced direct electron transfer of redox protein based on multiporous SnO2 nanofiber-carbon nanotube nanocomposite and its application in biosensing. Int. J. Biol. Macromol. 114, 1071–1076 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. M. Afzali, A. Mostafavi, T. Shamspur, Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arab. J. Chem. 13, 3255–3265 (2018)

    Article  CAS  Google Scholar 

  51. C. Zhang, L. Su, L. Huang, J. Cheng, J. Li, H. Qin, A facile synthesis of Cu–MnO/CNF by electrospinning method and its electrochemical performance for supercapacitor application. Int. J. Electrochem. Sci. 14, 11358–11366 (2019)

    Article  CAS  Google Scholar 

  52. R.E. Del Sesto, T.M. McCleskey, A.K. Burrell, G.A. Baker, J.D. Thompson, B.L. Scott, J.S. Wilkes, P. Williams, Structure and magnetic behavior of transition metal based ionic liquids. Chem. Commun. (2008). https://doi.org/10.1039/b711189d

    Article  Google Scholar 

  53. N.M. Deraz, S.A. Shaban, S.M. Morsy, S.M. Desouky, O.H. Abd-Elkader, Environmentally evaluation for desulfurization of gas oil with [BMIM][FeCl4] based on catalytic ionic liquids at room temperature. J. Pure Appl. Microbiol. 7, 387–393 (2013)

    CAS  Google Scholar 

  54. F.A. Yassin, F.Y. El Kady, H.S. Ahmed, L.K. Mohamed, S.A. Shaban, A.K. Elfadaly, Highly effective ionic liquids for biodiesel production from waste vegetable oils. Egypt. J. Pet. 24(1), 103–111 (2015)

    Article  Google Scholar 

  55. M. Guzman, M. Arcos, J. Dille, S. Godet, C. Rousse, Effect of the concentration of NaBH4 and N2H4 as reductant agent on the synthesis of copper oxide nanoparticles and its potential antimicrobial applications. Nano Biomed. Eng. 10(4), 392–405 (2018)

    Article  CAS  Google Scholar 

  56. S. Aziz, R. Abdulwahid, M. Rasheed, O. Abdullah, H. Ahmed, Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers 9(10), 486 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  57. P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, V. Veer, CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv. 4(76), 40580–40587 (2014)

    Article  CAS  Google Scholar 

  58. N. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 6(6), 933–939 (2016)

    Article  CAS  Google Scholar 

  59. X.-H. Zhang, S.-M. Wang, L. Jia, Z.-X. Xu, Y. Zeng, Electrochemical properties of colchicine on the PoPD/SWNTs composite-modified glassy carbon electrode. Sens. Actuators B Chem. 134(2), 477–482 (2008)

    Article  CAS  Google Scholar 

  60. K. Morawska, T. Popławski, W. Ciesielski, S. Smarzewska, Electrochemical and spectroscopic studies of the interaction of antiviral drug Tenofovir with single and double stranded DNA. Bioelectrochemistry 123, 227–232 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. J. Hirst, Elucidating the mechanisms of coupled electron transfer and catalytic reactions by protein film voltammetry. Biochim. Biophys. Acta (BBA) Bioenerg 1757(4), 225–239 (2006)

    Article  CAS  Google Scholar 

  62. F. Wang, J. Zhou, Y. Liu, S. Wu, G. Song, B. Ye, Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode. Analyst 136(19), 3943–3949 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. W. Wen, Y. Tan, H. Xiong, S. Wang, Voltammetric and spectroscopic investigations of the interaction between colchicine and bovine serum albumin. Int. J. Electrochem. Sci. 5, 232–241 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the founders of Shahid Bahonar University of Kerman, Mr. Alireza Afzalipour and his wife, Mrs. Fakhereh Saba, for their foresight and generosity in training future generations of doctors, engineers and scientists. In addition, the authors would like to acknowledge their thanks to Dr. Parviz Dabiri for his generous support for the research activities of the chemistry and nanolaboratories in Shahid Bahonar University of Kerman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Afzali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzali, M., Mostafavi, A. & Shamspur, T. Sensitive detection of colchicine at a glassy carbon electrode modified with magnetic ionic liquid/CuO nanoparticles/carbon nanofibers in pharmaceutical and plasma samples. J IRAN CHEM SOC 17, 1753–1764 (2020). https://doi.org/10.1007/s13738-020-01894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01894-2

Keywords

Navigation