Skip to main content
Log in

Purification of 2,4,6-trinitrotoluene by digestion with sodium sulfite and determination of its impurities by gas chromatography–electron capture detector (GC-ECD)

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Unwanted compounds in 2,4,6-trinitrotoluene (TNT) explosive, such as dinitrotoluene (DNT) and TNT isomers, can lead to exudation defects in the ammunition. For this reason, separation and analysis of impurities are valuable. Chemical treatment with sulfite solution is an important method for the purification of TNT. In this paper, TNT was purified by sodium sulfite solution with putting flaked TNT in digestion condition to remove existing impurities, and the effect of four main factors, digestion temperature, digestion time, concentration of sulfite solution and reaction time of sulfite with impurities on this purification process, was statistically investigated and optimized using central composite design of experiment (CCD) by Minitab software. Also, the qualification of final product was characterized by gas chromatography–electron capture detector method. Here, some conventional compounds such as 2,6-DNT, 2,4-DNT, 3,4-DNT, 2,4,5-TNT (γ-TNT), 2,3,4-TNT (β-TNT) and aniline derivatives were identified by standard solutions; then their concentrations were quantitatively determined by internal standard calibration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Kaye, Encyclopaedia of Explosives and Related Items (Dover, NJ, 1980)

    Book  Google Scholar 

  2. T. Urbański, Chemistry and Technology of Explosives (Pergamon Press, Oxford, 1984), pp. 160–185

    Google Scholar 

  3. J.G. Harold, M. Louis, and K.P. Otis, US Patents 3536544 (1970)

  4. R.W. Millar, A.W. Arber, R.M. Endsor, J. Hamid, M.E. Colclough, J. Energ. Mater. 29, 88 (2011)

    Article  CAS  Google Scholar 

  5. P. Guo-zhi, Chin. J. Explos. Propell. 6, 12 (2008)

    Google Scholar 

  6. J.A. Wyler, R.N. Boyd, US Patent 2297733 (1942)

  7. P.D. George, US Patent 1975598 (1934)

  8. M.F. Acken, R.M. Cavanaugh, US Patent 2380248 (1945)

  9. E.E. Gilbert, US Patent 3956409 (1976)

  10. E.E. Gilbert, US Patent 4003953 (1977)

  11. W.H. Rinkenbach, US Patent 1936607 (1933)

  12. D.C. Warren, US Patent 1964792 (1934)

  13. M.A. Spalding, L.F. Albright, Ind. Eng. Chem. Process Des. Dev. 24, 1010 (1985)

    Article  CAS  Google Scholar 

  14. A. Wyler, A. Joseph, US Patent RE20, 926 (1938)

  15. D. Gehring, Anal. Chem. 42, 898 (1970)

    Article  CAS  Google Scholar 

  16. D. Gehring, G.S. Reddy, Anal. Chem. 40, 792 (1968)

    Article  CAS  Google Scholar 

  17. S.K. Yasuda, J. Chromatogr. A 13, 78 (1964)

    Article  CAS  Google Scholar 

  18. T.C. Castorina, DTIC Document (1980)

  19. T.F. Jenkins, R.P. Murrmann, D.C. Leggett, J. Chem. Eng. Data 18, 438 (1973)

    Article  CAS  Google Scholar 

  20. D. Gehring, J. Shirk, Anal. Chem. 39, 1315 (1967)

    Article  CAS  Google Scholar 

  21. R. Dalton, J. Kohlbeck, W. Bolleter, J. Chromatogr. A 50, 219 (1970)

    Article  CAS  Google Scholar 

  22. J. Kohlbeck, C. Chandler, W. Bolleter, J. Chromatogr. A 46, 173 (1970)

    Article  CAS  Google Scholar 

  23. X. Zhao, J. Yinon, J. Chromatogr. A 946, 125 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. R. Waddell, D.E. Dale, M. Monagle, S.A. Smith, J. Chromatogr. A 1062, 125 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. H. Brust, S. Willemse, T. Zeng, A. van Asten, M. Koeberg, A. van der Heijden, A. Bolck, P. Schoenmakers, J. Chromatogr. A 1374, 224 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. M.E. Walsh, Talanta 54, 427 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. J.S. Parsons, S. Tsang, M. Digiaimo, R. Feinland, R. Paylor, Anal. Chem. 33, 1858 (1961)

    Article  CAS  Google Scholar 

  28. T.L. Chang, Anal. Chim. Acta 53, 445 (1971)

    Article  CAS  Google Scholar 

  29. M. Rowe, J. Chromatogr. Sci. 4, 420 (1966)

    Article  CAS  Google Scholar 

  30. W.H. Dennis Jr., D.H. Rosenblatt, W.G. Blucher, C.L. Coon, J. Chem. Eng. Data 20, 202 (1975)

    Article  CAS  Google Scholar 

  31. H.M. McNair, J.M. Miller, Basic Gas Chromatography (Wiley, Hoboken, 2011), pp. 55–57

    Google Scholar 

  32. J.M. Phelan, J.L. Barnett, J. Chem. Eng. Data 46, 375 (2001)

    Article  CAS  Google Scholar 

  33. P. Chen, W. Lo, K. Hu, J. Mol. Struct. 389, 91 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Ghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, M., Ghani, K. & Damiri, S. Purification of 2,4,6-trinitrotoluene by digestion with sodium sulfite and determination of its impurities by gas chromatography–electron capture detector (GC-ECD). J IRAN CHEM SOC 16, 2401–2408 (2019). https://doi.org/10.1007/s13738-019-01709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01709-z

Keywords

Navigation