Skip to main content
Log in

Comparison of the effects of sucrose molecules on alcohol dehydrogenase folding with those of sorbitol molecules on alcohol dehydrogenase folding using molecular dynamics simulation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.1 M) and one in the absence of sucrose. The results show that the sucrose molecules cluster and move toward the protein, and expel water from the protein surface. Also, coating by sucrose increases the conformational fluctuations of the protein compared to the sucrose-free system. In fact, at concentrated sucrose solution of 0.1 M, sucrose molecules accumulate around the protein surface and interact with ADH via many H-bonds, and form a continuous space-filling network. This network forms H-bonds with ADH and water molecules on the average distance of 5.5 and 11.9 Å, respectively. Actually, sucrose molecules have been located between water molecules and protein, while hydrogen bonding between sucrose–protein is less by about 19 % than that of sorbitol-protein. Also, hydrogen bonding between ADH and water molecules is decreased about 37 % in the presence of sucrose compared to sorbitol. Thus, it is expected that ADH folding is increased in the presence of sucrose molecules. It is finally concluded that Sucrose molecules form H-bond with water molecules by their polar groups, and the aromatic and nonpolar parts of sucrose molecules have the least share in interaction with ADA. Thus, functional groups of ADA are free and its flexibility and folding enhance in the presence of sucrose molecules. The latter fact is completely the reverse of sorbitol effect on ADA in moderately concentrated sorbitol solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.T. Smith, N. Santama, S. Dacey, M. Edwards, R.C. Bray, R.N. Thorneley, J.F. Burke, J. Biol. Chem. 265, 13335 (1990)

    CAS  Google Scholar 

  2. J. Rösgen, Methids. Enzymol. 428, 459 (2006)

    Article  Google Scholar 

  3. D.W. Bolen, I.V. Baskakov, J. Mol. Biol. 310, 955 (2001)

    Article  CAS  Google Scholar 

  4. B.J. Bennion, V. Daggett, Proc. Natl. Acad. Sci. USA 101, 6433 (2004)

    Article  CAS  Google Scholar 

  5. X.Y. Dong, Y. Huang, Y. Sun, J. Biotechnol. 114, 135 (2004)

    Article  CAS  Google Scholar 

  6. S. Bourot, O. Sire, A. Trautwetter, T. Touźe, L.F. Wu, C. Blanco, T. Bernard, J. Biol. Chem. 275, 1050 (2000)

    Article  CAS  Google Scholar 

  7. L.Y. Chen, J.A.B. Ferreira, S.M.B. Costa, G.J.M. Cabrita, D.E. Otzen, E.P. Melo, Biochemistry 45, 2189 (2006)

    Article  CAS  Google Scholar 

  8. S.D. Allison, B. Chang, T.W. Randolph, J.F. Carpenter, Arch. Biochem. Biophys. 365, 289 (1999)

    Article  CAS  Google Scholar 

  9. M. Auton, D.W. Bolen, Biochemistry 43, 1329 (2004)

    Article  CAS  Google Scholar 

  10. S. Prestrelaki, N. Tedescji, T. Arakawa, J.F. Carpenter, Biophys. J. 65, 661 (1993)

    Article  Google Scholar 

  11. J.F. Carpenter, J.H. Crowe, Biochemistry 28, 3916 (1989)

    Article  CAS  Google Scholar 

  12. J.H. Crowe, J.F. Carpenter, L.M. Crowe, Annu. Rev. Physiol. 6, 73 (1998)

    Article  Google Scholar 

  13. P.S. Belton, A.M. Gil, Biopolymers 34, 957 (1994)

    Article  CAS  Google Scholar 

  14. S.J. Hagen, J. Hofrichter, W.A. Eaton, Science 269, 959 (1995)

    Article  CAS  Google Scholar 

  15. L. Fu-Feng, D. Xiao-Yan, J. Mol. Graphics. Modell. 27, 421 (2008)

    Article  Google Scholar 

  16. D. Lins, S. Pereira, H. Cristina, P. Hünenberger, Proteins 55, 1777 (2004)

    Article  Google Scholar 

  17. H. Bahrami, M. Zahedi, A.A. Moosavi-Movahedi, H. Azizian, M. Amanlou, Cell Biochem. Biophys. 59, 79 (2011)

    Article  CAS  Google Scholar 

  18. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comp. Chem. 26, 1701 (2005)

    Article  Google Scholar 

  19. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)

    Article  CAS  Google Scholar 

  20. H. Li, A.D. Roberton, J.H. Jensen, Proteins 61, 704 (2005)

    Article  CAS  Google Scholar 

  21. C.M. Breneman, K.B. Wiberg, J. Comp. Chem. 11, 361 (1990)

    Article  CAS  Google Scholar 

  22. O.M. Decker, Computational Biochemistry and Biophysic, 1st edn. (Marcel, New York, 2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the graduate council of Lorestan University, Shahid Beheshti University for their financial support. Also the author’s thanks go to the Iran National Science Foundation for a grant to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayoon Bahrami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2015_671_MOESM1_ESM.jpg

Supplementary material 1 The number of inter-molecular and intra-molecular hydrogen bonds for final geometries of ADH, sorbitol and water molecules which were obtained from MD simulations of 5 ns in the presence of sorbitol molecules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, H., Zahedi, M. Comparison of the effects of sucrose molecules on alcohol dehydrogenase folding with those of sorbitol molecules on alcohol dehydrogenase folding using molecular dynamics simulation. J IRAN CHEM SOC 12, 1973–1982 (2015). https://doi.org/10.1007/s13738-015-0671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0671-3

Keywords

Navigation