Skip to main content
Log in

Perovskite-type ferromagnetic BiFeO3 nanopowder: a new magnetically recoverable heterogeneous nanocatalyst for efficient and selective transfer hydrogenation of aromatic nitro compounds into aromatic amines under microwave heating

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Perovskite-type ferromagnetic BiFeO3 nanopowder was readily synthesized via thermal decomposition of Bi[Fe(CN)6]·5H2O complex and characterized using thermal analysis (TGA/DSC), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT–IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), magnetic measurement and Brunauer–Emmett–Teller (BET) specific surface area measurements. The magnetic measurements show a ferromagnetic behavior for the BiFeO3 nanoparticles at room temperature. This nanosized ferromagnetic oxide with an average particle size of approximately 20 nm and a specific surface area of 48.5 m2/g was used as a new magnetically recoverable heterogeneous nanocatalyst for the highly efficient and selective reduction of aromatic nitro compounds into their corresponding amines by using propan-2-ol as the hydrogen donor under microwave irradiation. This method is regio- and chemoselective, clean, inexpensive and compatible with the substrates having hydrogenlyzable or reducible functional groups. As compared with conventional heating, this method is very fast and suitable for the large-scale preparation of different substituted anilines as well as other arylamines. The catalyst can also be reused without loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. R.C. Larock, Comprehensive organic transformations: a guide to functional group preparation, 2nd edn. (Wiley-VCH: Weinheim, 1999), pp. 821–828

  2. C.A. Marlic, S. Motamed, B. Quinn, J. Org. Chem. 60, 3365–3369 (1995)

    Article  Google Scholar 

  3. M. Hudlicky, Reductions in organic chemistry, 2nd edn. (ACS Monograph, 1996)

  4. H.Y. Lee, M. An, Co2(CO)8/H2O Bull. Korean Chem. Soc. 25 1717–1719 (2004)

    Google Scholar 

  5. S. Iyer, G.M. Kulkarni, Mo(CO)6 Synth. Commun. 34 721–725 (2004)

    Google Scholar 

  6. P. De, SnCl2/ionic liquid. Synlett 1835–1837 (2004)

  7. A. Vass, J. Dudar, R.S. Varma, N2H4/FeCl3. Tetrahedron Lett. 42 5347–5379 (2001)

    Google Scholar 

  8. S. Gowda, D.C. Gowda, N2H4/Zn. Ind. J. Chem. 42B 180–183 (2003)

    Google Scholar 

  9. G.R. Srinivasa, K. Abiraj, D.C. Gowda, HCOONH4/Mg. Ind. J. Chem. 42B 2885–2887 (2003)

    Google Scholar 

  10. S. Gowda, B.K.K. Gowda, D.C. Gowda, HCOON2H5/Zn. Synth. Commun. 33 281–289 (2003)

    Google Scholar 

  11. G.D. Yadav, S.V. Lande, Na2S/NEt4Br. Adv. Synth. Catal. 347 1235–1241 (2005)

  12. S. Gowda, D.C. Gowda HCOON2H5/Raney Ni. Tetrahedron Lett. 58 2211–2213 (2002)

  13. M.A. McLaughlin, D.M. Barnes, S8/NaHCO3 Tetrahedron Lett. 41 5347–5349 (2001)

    Google Scholar 

  14. I. Pogorelic, M. Filipan-Litvic, S. Merkas, G. Ljubic, L. Cepanec, M. Litvic, M. NaBH4/Raney nickel. J. Mol. Catal. A: Chem. 274 202–207 (2007)

  15. L. Pehlivan, E. Metay, S. Laval, W. Dayoub, P. Demonchaux, G. Mignani, M. Lemaire, Fe(acac)3/TMDS. Tetrahedron Lett. 51 1939–1941 (2010)

  16. J.F. Quinn, C.E. Bryant, K.C. Golden, B.T. Gregg, Tetrahedron Lett. 51, 786–789 (2010)

    Article  CAS  Google Scholar 

  17. R.A.W. Johnstone, A.H. Wilby, I.D. Entwistle, Chem. Rev. 85, 129–170 (1985)

    Article  CAS  Google Scholar 

  18. S.K. Mohopatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Tetrahedron Lett. 43, 8527–8529 (2002)

    Article  Google Scholar 

  19. S.K. Mohopatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Org. Lett. 24, 4297–4300 (2002)

    Article  Google Scholar 

  20. S.U. Sonavane, R.V. Jayaram, Synth. Commun. 33, 843–849 (2003)

    Article  CAS  Google Scholar 

  21. S.U. Sonavane, S.K. Mohopatra, R.V. Jayaram, P. Selvam, Chem. Lett. 32, 142–143 (2003)

    Article  CAS  Google Scholar 

  22. S.K. Mohopatra, Mohopatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Appl. Catal. B Environ. 46, 155–163 (2003)

    Article  Google Scholar 

  23. S.U. Sonavane, R.V. Jayaram, Synlett 146–148 (2004)

  24. P. Selvam, S.U. Sonavane, S.K. Mohopatra, R.V. Jayaram, Tetrahedron Lett. 45, 3071–3075 (2004)

    Article  CAS  Google Scholar 

  25. P. Selvam, S.U. Sonavane, S.K. Mohopatra, R.V. Adv, Synth. Catal. 346, 542–544 (2004)

    Article  CAS  Google Scholar 

  26. G. Schmidt, Nanoparticles: from theory to application (VCH, Weinheim, 2004)

    Google Scholar 

  27. B. Zhou, S. Han, R. Raja, G.A. Somorjai, Nanotechnology in Catalysis, vol 3 (Springer, New York, 2007)

  28. P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo, Appl. Catal. B Environ. 29, 239–244 (2001)

    Article  CAS  Google Scholar 

  29. R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, J. Mol. Catal. A Chem. 197, 147–152 (2003)

    Article  CAS  Google Scholar 

  30. N. Russo, D. Fino, G. Saracco, V. Specchia, J. Catal. 229, 459–463 (2005)

    Article  CAS  Google Scholar 

  31. F. De Bruijn, Green Chem. 7, 132–136 (2005)

    Article  Google Scholar 

  32. S. Farhadi, N. Rashidi, Polyhedron 29 2959–2965 (2010) and references cited therein

  33. S. Farhadi, M. Zaidi, J. Mol. Catal. A Chem. 299, 18–25 (2009)

    Article  CAS  Google Scholar 

  34. S. Farhadi, M. Zaidi, Appl. Catal. A Gen. 354, 119–126 (2009)

    Article  CAS  Google Scholar 

  35. S. Farhadi, S. Sepahvand, J. Mol. Catal. A Chem. 318, 75–84 (2010)

    Article  CAS  Google Scholar 

  36. S. Farhadi, S. Panahandehjoo, Appl. Catal. A Gen. 382, 293–302 (2010)

    Article  CAS  Google Scholar 

  37. E. Traversa, M. Sakamoto, Y. Sadaoka, J. Am. Ceram. Soc. 79, 1401–1404 (1996)

    Article  CAS  Google Scholar 

  38. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Part B: applications in coordination, organometallic, and bioinorganic chemistry, 6th edn. (Wiley, New York, 2009)

    Google Scholar 

  39. G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24, 436–445 (1970)

    Article  CAS  Google Scholar 

  40. H.P. Klug, L.E. Alexander, X-ray diffraction procedures, 2nd edn. (Wiley, New York, 1964)

    Google Scholar 

  41. Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, J. Am. Ceram. Soc. 90, 2615–2617 (2007)

    Article  CAS  Google Scholar 

  42. X. Wang, Y. Zhang, Z. Wu, Mater. Lett. 64, 486–488 (2010)

    Article  CAS  Google Scholar 

  43. J. Wei, D. Xue, Mater. Res. Bull. 43, 3368–3373 (2008)

    Article  CAS  Google Scholar 

  44. Y. Tsukahara, A. Higashi, T. Yamauchi, T. Nakamura, M. Yasuda, A. Baba, Y. Wada, J. Phys. Chem. C 114, 8965–8970 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Lorestan University Research Council and Iran Nanotechnology Initiative Council (INIC) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Farhadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhadi, S., Rashidi, N. Perovskite-type ferromagnetic BiFeO3 nanopowder: a new magnetically recoverable heterogeneous nanocatalyst for efficient and selective transfer hydrogenation of aromatic nitro compounds into aromatic amines under microwave heating. J IRAN CHEM SOC 9, 1021–1031 (2012). https://doi.org/10.1007/s13738-012-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-012-0149-5

Keywords

Navigation