Skip to main content

Advertisement

Log in

Survey on brain tumor segmentation and feature extraction of MR images

  • Trends and Surveys
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

Brain tumor analysis plays an important role in medical imaging applications and in delivering a huge amount of anatomical and functional information, which increases and simplifies the diagnosis and disease therapy planning. However, the presence of image artifacts such as noise, intensity inhomogeneity and partial volume effect in magnetic resonance images can aggressively affect the quantitative brain tumor analysis. Also, the complex anatomy of the brain is another necessary factor to deal with. To avoid or reduce manual segmentation error, the automatic segmentation and detection of tumor have become the most challenging task for radiologists and clinicians. In this paper, most commonly used MR brain image segmentation algorithms and most popular brain MRI features are surveyed and summarized with an emphasis on their characteristics, merits, and demerits of these techniques. This paper presents a categorization of various segmentation algorithms ranging from simple threshold methods to high-level segmentation techniques such as deformable methods, graph-based, and deep learning approaches with a focus on gliomas which is most common of all malignant brain and central nervous system tumors. We also discuss the current trends with a focus on brain tumor segmentation, tissue segmentation and lesion detection using deep learning methods such as deep neural networks and convolutional neural networks. We also mentioned the future improvements to standardize the MRI-based brain tumor detection method for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Images are generated by using BRATS 2013 data [7]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Google Scholar 

  2. Dasgupta A, Gupta T, Jalali R (2016) Indian data on central nervous tumors: a summary of published work. South Asian J Cancer 5(3):147

    Google Scholar 

  3. A. B. T. Association et al (2014) Brain tumor statistics. Retrieved Dec 2014

  4. Lauterbur P (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Google Scholar 

  5. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10(3):L55

    Google Scholar 

  6. Sprawls P (2000) Magnetic resonance imaging: principles, methods, and techniques. Medical Physics Publishing, Madison

    Google Scholar 

  7. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993

    Google Scholar 

  8. Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, Rueckert D, Hajnal JV (2007) Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38(3):461–477

    Google Scholar 

  9. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Google Scholar 

  10. Battaglini M, Smith SM, Brogi S, De Stefano N (2008) Enhanced brain extraction improves the accuracy of brain atrophy estimation. NeuroImage 40(2):583–589

    Google Scholar 

  11. Ortiz A, Górriz J, Ramírez J, Salas-Gonzalez D, Llamas-Elvira JM (2013) Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput 13(5):2668–2682

    Google Scholar 

  12. Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21(2):192–196

    Google Scholar 

  13. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Google Scholar 

  14. Cohen MS, DuBois RM, Zeineh MM (2000) Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging. Hum Brain Mapp 10(4):204–211

    Google Scholar 

  15. Mangin J (2000) Entropy minimization for automatic correction of intensity nonuniformity. In: Proceedings of IEEE workshop on mathematical methods in biomedical image analysis, 2000. IEEE, pp 162–169

  16. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876

    Google Scholar 

  17. Lewis EB, Fox NC (2004) Correction of differential intensity inhomogeneity in longitudinal MR images. NeuroImage 23(1):75–83

    Google Scholar 

  18. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image using Matlab processing. Person Prentice Hall, Lexington

    Google Scholar 

  19. Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97

    Google Scholar 

  20. Rogowska J (2000) Overview and fundamentals of medical image segmentation. In: Bankman I (ed) Handbook of medical imaging, processing and analysis. Elsevier, pp 69–85

  21. Kabir Y, Dojat M, Scherrer B, Forbes F, Garbay C (2007) Multimodal MRI segmentation of ischemic stroke lesions. In: 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1595–1598

  22. Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Phys Med Biol 41(11):2437

    Google Scholar 

  23. Sung Y-C, Han K-S, Song C-J, Noh S-M, Park J-W (2000) Threshold estimation for region segmentation on MR image of brain having the partial volume artifact. In: 5th international conference on signal processing proceedings, WCCC-ICSP, vol 2. IEEE, pp 1000–1009

  24. Shanthi K, Kumar MS (2007) Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems. IEEE, pp 422–426

  25. Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. NeuroImage 23(2):454–461

    Google Scholar 

  26. Sahoo PK, Soltani S, Wong AK (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260

    Google Scholar 

  27. Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132

    Google Scholar 

  28. Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C, Jahn C (2005) Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Reson Imaging 21(6):715–725

    Google Scholar 

  29. del Fresno M, Vénere M, Clausse A (2009) A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans. Comput Med Imaging Graph 33(5):369–376

    Google Scholar 

  30. Kuo W-F, Lin C-Y, Sun Y-N (2008) Brain MR images segmentation using statistical ratio: mapping between watershed and competitive hopfield clustering network algorithms. Comput Methods Programs Biomed 91(3):191–198

    Google Scholar 

  31. Li N, Liu M, Li Y (2007) Image segmentation algorithm using watershed transform and level set method. In: IEEE international conference on acoustics, speech and signal processing, vol 1. IEEE, pp I–613

  32. Gies V, Bernard TM (2004) Statistical solution to watershed over-segmentation. In: International conference on image processing, vol 3. IEEE, pp 1863–1866

  33. Bleau A, Leon LJ (2000) Watershed-based segmentation and region merging. Comput Vis Image Underst 77(3):317–370

    Google Scholar 

  34. Bhattacharya M, Das A (2008) A study on seeded region based improved watershed transformation for brain tumor segmentation. In: The XXIX general assembly of the international union of radio science

  35. Ratan R, Sharma S, Sharma S (2009) Multiparameter segmentation and quantization of brain tumor from MRI images. Indian J Sci Technol 2(2):11–15

    Google Scholar 

  36. Al-Dmour H, Al-Ani A (2018) A clustering fusion technique for MR brain tissue segmentation. NeuroComputing 275:546–559

    Google Scholar 

  37. Coleman GB, Andrews HC (1979) Image segmentation by clustering. Proc IEEE 67(5):773–785

    Google Scholar 

  38. Balafar M (2014) Fuzzy \(c\)-mean based brain MRI segmentation algorithms. Artif Intell Rev 41(3):441–449

    Google Scholar 

  39. Yang X, Fei B (2011) A multiscale and multiblock fuzzy \(c\)-means classification method for brain MR images. Med Phys 38(6 Part 1):2879–2891

    Google Scholar 

  40. Capelle AS, Alata O, Fernandez C, Lefèvre S, Ferrie J (2000) Unsupervised segmentation for automatic detection of brain tumors in MRI. In: Proceedings of international conference on image processing, vol 1. IEEE, pp 613–616

  41. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337

    Google Scholar 

  42. Kang D, Shin SY, Sung CO, Kim JY, Pack JK, Choi HD (2011) An improved method of breast MRI segmentation with simplified K-means clustered images. In: Proceedings of the ACM symposium on research in applied computation. ACM, pp 226–231

  43. Kannan S (2005) Segmentation of MRI using new unsupervised fuzzy C mean algorithm. ICGST-GVIP J 5(2):17–24

    Google Scholar 

  44. Cheng TW, Goldgof DB, Hall LO (1998) Fast fuzzy clustering. Fuzzy Sets Syst 93(1):49–56

    MATH  Google Scholar 

  45. Han J-K, Kim H-M (1999) Efficient algorithm for channel-optimised vector quantisation. Electron Lett 35(16):1305–1306

    Google Scholar 

  46. Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the \(k\)-medoids algorithm with application to web document and snippet clustering. In: Proceedings of IEEE fuzzy systems, FUZZ-IEEE’99, vol 3. IEEE, pp 1281–1286

  47. Xu X, Jäger J, Kriegel H-P (1999) A fast parallel clustering algorithm for large spatial databases. In: Furnkranz J (ed) High performance data mining. Springer, Berlin, pp 263–290

    Google Scholar 

  48. Ke J (1999) Fast accurate fuzzy clustering through reduced precision. PhD thesis, University of South Florida

  49. Tran TN, Wehrens R, Buydens LM (2005) Clustering multispectral images: a tutorial. Chemometr Intell Lab Syst 77(1–2):3–17

    Google Scholar 

  50. Gering DT, Grimson WEL, Kikinis R (2002) Recognizing deviations from normalcy for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 388–395

  51. Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner H-W (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886

    Google Scholar 

  52. Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15(4):429–442

    Google Scholar 

  53. Denoeux T (2013) Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans Knowl Data Eng 25(1):119–130

    Google Scholar 

  54. Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908

    Google Scholar 

  55. Tian G, Xia Y, Zhang Y, Feng D (2011) Hybrid genetic and variational expectation–maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation. IEEE Trans Inf Technol Biomed 15(3):373–380

    Google Scholar 

  56. Lee J-D, Su H-R, Cheng PE, Liou M, Aston JA, Tsai AC, Chen C-Y (2009) MR image segmentation using a power transformation approach. IEEE Trans Med Imaging 28(6):894–905

    Google Scholar 

  57. Davenport J, Bezdek J, Hathaway R (1988) Parameter estimation for finite mixture distributions. Comput Math Appl 15(10):819–828

    MathSciNet  MATH  Google Scholar 

  58. Warfield SK, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43–55

    Google Scholar 

  59. Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust brain MRI tissue classification method. Med Image Anal 7(4):513–527

    Google Scholar 

  60. Clarke L (1991) MR image segmentation using MLM and artificial neural nets. Med Phys 18(3):673

    Google Scholar 

  61. Ozkan M, Dawant BM, Maciunas RJ (1993) Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE Trans Med Imaging 12(3):534–544

    Google Scholar 

  62. Chaplot S, Patnaik L, Jagannathan N (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Google Scholar 

  63. Vijayakumar C, Damayanti G, Pant R, Sreedhar C (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31(7):473–484

    Google Scholar 

  64. Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918

    Google Scholar 

  65. Murugavalli S, Rajamani V (2007) An improved implementation of brain tumor detection using segmentation based on neuro fuzzy technique 1. J Comp Sci 3(11):841–846. https://doi.org/10.3844/jcssp.2007.841.846

    Google Scholar 

  66. Tayel MB, Abdou MA (2006) A neuro-difference fuzzy technique for automatic segmentation of region of interest in medical imaging. In: Proceedings of the twenty third national radio science conference, NRSC. IEEE, pp 1–7

  67. Wells W, Grimson WEL, Kikinis R, Jolesz FA (1995) Adaptive segmentation of MRI data. In: Computer vision, virtual reality and robotics in medicine. Springer, pp 59–69

  68. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851

    Google Scholar 

  69. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Google Scholar 

  70. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Google Scholar 

  71. Pohl KM, Fisher J, Grimson WEL, Kikinis R, Wells WM (2006) A Bayesian model for joint segmentation and registration. NeuroImage 31(1):228–239

    Google Scholar 

  72. Therrien CW, Therrien CW (1989) Decision, estimation, and classification: an introduction to pattern recognition and related topics. Wiley, New York

    MATH  Google Scholar 

  73. Selvapandian A, Manivannan K (2018) Fusion based glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Programs Biomed 166:33–38

    Google Scholar 

  74. Cuadra MB, Duay V, Thiran J-P (2015) Atlas-based segmentation. In: Paragios N, Duncan J, Ayache N (eds) Handbook of biomedical imaging. Springer, Boston, pp 221–244

    Google Scholar 

  75. Zöllei L, Shenton M, Wells W, Pohl K (2007) The impact of atlas formation methods on atlas-guided brain segmentation. In: Proceedings of medical image computing and computer-assisted intervention: MICCAI international conference on medical image computing and computer-assisted intervention. Citeseer, pp 39–46

  76. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis. In: Proceedings of the workshop on mathematical methods in biomedical image analysis. IEEE, pp 171–180

  77. Xu C, Pham DL, Prince JL (2000) Image segmentation using deformable models. Handb Med Imaging 2:129–174

    Google Scholar 

  78. Shi F, Shen D, Yap P-T, Fan Y, Cheng J-Z, An H, Wald LL, Gerig G, Gilmore JH, Lin W (2011) Cents: cortical enhanced neonatal tissue segmentation. Hum Brain Mapp 32(3):382–396

    Google Scholar 

  79. Weisenfeld NI, Warfield SK (2009) Automatic segmentation of newborn brain MRI. NeuroImage 47(2):564–572

    Google Scholar 

  80. Prastawa M, Gilmore JH, Lin W, Gerig G (2005) Automatic segmentation of mr images of the developing newborn brain. Med Image Anal 9(5):457–466

    Google Scholar 

  81. Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS, Boardman JP, Rutherford MA, Edwards AD et al (2011) A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4):2750–2763

    Google Scholar 

  82. Zhou Y, Bai J (2007) Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI. IEEE Trans Biomed Eng 54(1):122–129

    Google Scholar 

  83. Cobzas D, Birkbeck N, Schmidt M, Jagersand M, Murtha A (2007) 3D variational brain tumor segmentation using a high dimensional feature set. In: Proceedings of the 2007 IEEE 11th international conference on computer vision, 14–21 Oct. 2007, Rio de Janeiro, Brazil. https://doi.org/10.1109/ICCV.2007.4409130

  84. Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G (2003) Automatic brain tumor segmentation by subject specific modification of atlas priors1. Acad Radiol 10(12):1341–1348

    Google Scholar 

  85. Ho S, Bullitt E, Gerig G (2002) Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceedings of 16th international conference on pattern recognition, vol 1. IEEE, pp 532–535

  86. Sethian JA (1996) Level set methods, evolving interfaces in geometry, fluid mechanics computer vision, and materials sciences, Cambridge monographs on applied and computational mathematics, vol 3

  87. Gui L, Lisowski R, Faundez T, Hüppi PS, Lazeyras F, Kocher M (2012) Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal 16(8):1565–1579

    Google Scholar 

  88. Wang L, Shi F, Li G, Gao Y, Lin W, Gilmore JH, Shen D (2014) Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84:141–158

    Google Scholar 

  89. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    MATH  Google Scholar 

  90. Terzopoulos D, Witkin AP, Kass M (1988) Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif Intell 36(1):91–123

    MATH  Google Scholar 

  91. Cohen LD, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147

    Google Scholar 

  92. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277

    MATH  Google Scholar 

  93. Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1995) Gradient flows and geometric active contour models. In: Proceedings of fifth international conference on computer vision. IEEE, pp 810–815

  94. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Google Scholar 

  95. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    MATH  Google Scholar 

  96. Li C, Huang R, Ding Z, Gatenby J, Metaxas DN, Gore JC et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007

    MathSciNet  MATH  Google Scholar 

  97. Huang A, Abugharbieh R, Tam R, Initiative ADN et al (2009) A hybrid geometric-statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 56(7):1838–1848

    Google Scholar 

  98. Kimmel R (2003) Fast edge integration. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision, and graphics. Springer, Berlin, pp 59–77

    Google Scholar 

  99. Sagiv C, Sochen NA, Zeevi YY (2006) Integrated active contours for texture segmentation. IEEE Trans Image Process 15(6):1633–1646

    Google Scholar 

  100. Mesejo P, Valsecchi A, Marrakchi-Kacem L, Cagnoni S, Damas S (2015) Biomedical image segmentation using geometric deformable models and metaheuristics. Comput Med Imaging Graph 43:167–178

    Google Scholar 

  101. Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus Romero-Troncoso R, Aguirre-Ramos H, Cruz-Aceves I, Chalopin C (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. NeuroComputing 220:84–97

    Google Scholar 

  102. Li Q, Gao Z, Wang Q, Xia J, Zhang H, Zhang H, Liu H, Li S (2018) Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6:9543–9553

    Google Scholar 

  103. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    MATH  Google Scholar 

  104. Moreno JC, Prasath VS, Proença H, Palaniappan K (2013) Brain MRI segmentation with fast and globally convex multiphase active contours. ArXiv preprint arXiv:1308.6056

  105. Brown ES, Chan TF, Bresson X (2012) Completely convex formulation of the Chan–Vese image segmentation model. Int J Comput Vis 98(1):103–121

    MathSciNet  MATH  Google Scholar 

  106. Kang SH, March R (2013) Existence and regularity of minimizers of a functional for unsupervised multiphase segmentation. Nonlinear Anal Theory Methods Appl 76:181–201

    MathSciNet  MATH  Google Scholar 

  107. Wang L, Li C, Sun Q, Xia D, Kao C-Y (2009) Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput Med Imaging Graph 33(7):520–531

    Google Scholar 

  108. Chambolle A, Cremers D, Pock T (2012) A convex approach to minimal partitions. SIAM J Imaging Sci 5(4):1113–1158

    MathSciNet  MATH  Google Scholar 

  109. Bae E, Yuan J, Tai X-C (2011) Global minimization for continuous multiphase partitioning problems using a dual approach. Int J Comput Vis 92(1):112–129

    MathSciNet  MATH  Google Scholar 

  110. Tu Z, Narr KL, Dollár P, Dinov I, Thompson PM, Toga AW (2008) Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 27(4):495–508

    Google Scholar 

  111. Despotovic I, Vansteenkiste E, Philips W (2010) Brain volume segmentation in newborn infants using multi-modal MRI with a low inter-slice resolution. In: 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5038–5041

  112. Lötjönen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, Rueckert D, Initiative ADN et al (2010) Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3):2352–2365

    Google Scholar 

  113. Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MR images. J Med Phys Assoc Med Phys India 36(3):147

    Google Scholar 

  114. Ortiz A, Gorriz J, Ramirez J, Salas-Gonzalez D (2014) Improving MR brain image segmentation using self-organising maps and entropy-gradient clustering. Inf Sci 262:117–136

    Google Scholar 

  115. Xue J-H, Pizurica A, Philips W, Kerre E, Van De Walle R, Lemahieu I (2003) An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images. Pattern Recognit Lett 24(15):2549–2560

    Google Scholar 

  116. Li BN, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10

    Google Scholar 

  117. Kapur T, Grimson WEL, Wells WM, Kikinis R (1996) Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127

    Google Scholar 

  118. Masutani Y, Schiemann T, Höhne K-H (1998) Vascular shape segmentation and structure extraction using a shape-based region-growing model. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 1242–1249

  119. Akselrod-Ballin A, Galun M, Gomori MJ, Basri R, Brandt A (2006) Atlas guided identification of brain structures by combining 3D segmentation and SVM classification. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 209–216

  120. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  121. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851

  122. Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multi-modal brain tumor segmentation using deep convolutional neural networks, MICCAI BraTS (brain tumor segmentation) challenge. In: Proceedings, winning contribution, pp 31–35

  123. Shen H, Zhang J, Zheng W (2017) Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. In: IEEE international conference on image processing (ICIP). IEEE, pp 3864–3868

  124. Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings of MICCAI-BRATS, pp 36–39

  125. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Google Scholar 

  126. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251

    Google Scholar 

  127. Dvorak P, Menze B (2015) Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the multimodal brain tumor image segmentation challenge, pp 13–24

  128. Haralick RM, Shanmugam K, Dinstein I et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Google Scholar 

  129. Bonte S, Goethals I, Van Holen R (2018) Machine learning based brain tumour segmentation on limited data using local texture and abnormality. Comput Biol Med 98:39–47

    Google Scholar 

  130. Liu L, Fieguth P, Pietikäinen M, Lao S (2015) Median robust extended local binary pattern for texture classification. In: IEEE international conference on image processing (ICIP). IEEE, pp 2319–2323

  131. Nabizadeh N, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 45:286–301

    Google Scholar 

  132. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Google Scholar 

  133. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. NeuroComputing 234:11–26

    Google Scholar 

  134. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42(11):226

    Google Scholar 

  135. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Annual conference on medical image understanding and analysis. Springer, pp 506–517

  136. Anitha R, Raja DSS (2017) Segmentation of glioma tumors using convolutional neural networks. Int J Imaging Syst Technol 27(4):354–360

    Google Scholar 

  137. Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297

    Google Scholar 

  138. Saouli R, Akil M, Kachouri R et al (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Programs Biomed 166:39–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeetha Saman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saman, S., Jamjala Narayanan, S. Survey on brain tumor segmentation and feature extraction of MR images. Int J Multimed Info Retr 8, 79–99 (2019). https://doi.org/10.1007/s13735-018-0162-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-018-0162-2

Keywords

Navigation