Skip to main content
Log in

Facile synthesis of nanocellulose from wheat straw as an agricultural waste

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Agriculture waste is the most economic and promising source of raw materials. Wheat straw is a highly produced agricultural waste and its biodegradable nature makes it a perfect candidate for the synthesis of nanocellulose. Amalgamation of two techniques, i.e., chemical and mechanical techniques is used for synthesis of nanocellulose from agricultural waste. In the first technique, chemicals such as sodium hydroxide pellets (NaOH), sodium chlorite (NaClO2) and sulfuric acid (H2SO4) were used, and in the second one cryocrushing was used with the help of liquid nitrogen. Further, nanocellulose characteristics were examined by various techniques. X-ray diffraction (XRD) revealed that the synthesized nanoparticles possessed 76.43% crystallinity and an average diameter of 5 nm. Fourier transform-infrared (FTIR) spectroscopy indicated that the molecular structure of cellulose was sustained through sulfuric acid hydrolysis. Thermogravimetric analysis (TGA) indicated the increase in the decomposition temperature. Scanning electron microscopy (SEM) revealed the spherical morphology. Electrical characterization indicated that nanocellulose obeyed Arrhenius equation. Synthesized nanocellulose exhibited high crystallinity, high aspect ratio, thermal stability as well as electrical conductivity. Due to its exclusive physical and chemical characteristics like biocompatibility, light weight, optical transparency, adaptable surface chemistry, mechanical and thermal stability, nanocellulose has numerous applications in day to day life as well as in the medical field, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  2. Poletto M, Pistor V, Zattera AJ (2013). In: van de Ven T, Godbout L (eds) Cellulose-fundamental aspects, 2nd edn. Croatia, IntechOpen

    Google Scholar 

  3. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  4. Shankaran DR (2018). In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Applications of nanomaterials. Woodhead Publishing, UK

    Google Scholar 

  5. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  6. Podsiadlo P, Choi SY, Shim B, Lee J, Cuddihy M, Kotov NA (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol 6:2914–2918. https://doi.org/10.1021/bm050333u

    Article  CAS  Google Scholar 

  7. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518. https://doi.org/10.1021/bm050333u

    Article  CAS  Google Scholar 

  8. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  9. Nehra P, Chauhan RP (2021) Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. J Biomater Sci Polym Ed 32:112–149. https://doi.org/10.1080/09205063.2020.1817706

    Article  CAS  PubMed  Google Scholar 

  10. Espinosa E, Rol F, Bras J, Rodríguez A (2019) Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J Clean Prod 239:118083. https://doi.org/10.1016/j.jclepro.2019.118083

    Article  CAS  Google Scholar 

  11. Thakur M, Sharma A, Ahlawat V, Bhattacharya M, Goswami S (2020) Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Mater Sci Energy Technol 3:328–334. https://doi.org/10.1016/j.mset.2019.12.005

    Article  CAS  Google Scholar 

  12. Zheng D, Zhang Y, Guo Y, Yue J (2019) Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans regia L.) shell agricultural waste. Polymers 11:1130. https://doi.org/10.3390/polym11071130

    Article  CAS  PubMed Central  Google Scholar 

  13. Wulandari WT, Rochliadi A, Arcana IM (2016) Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf Ser: Materials Sci Eng 107:012045. https://doi.org/10.1088/1757-899X/107/1/012045

    Article  Google Scholar 

  14. Bansal M, Kumar D, Chauhan GS, Kaushik A (2018) Preparation, characterization and trifluralin degradation of laccase-modified cellulose nanofibers. Mater Sci Energ Technol 1:29–37. https://doi.org/10.1016/j.mset.2018.04.002

    Article  Google Scholar 

  15. Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9:16709. https://doi.org/10.1038/s41598-019-53412-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rehman N, de Miranda MI, Rosa SM, Pimentel DM, Nachtigall SM, Bica CI (2014) Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J Polym Environ 22:252–259. https://doi.org/10.1007/s10924-013-0624-9

    Article  CAS  Google Scholar 

  17. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294. https://doi.org/10.1039/C2NR30260H

    Article  CAS  PubMed  Google Scholar 

  18. Theivasanthi T, Christma FA, Toyin AJ, Gopinath SC, Ravichandran R (2018) Synthesis and characterization of cotton fiber-based nanocellulose. Int J Biol Macromol 109:832–836. https://doi.org/10.1016/j.ijbiomac.2017.11.054

    Article  CAS  PubMed  Google Scholar 

  19. Reddy JP, Rhim JW (2014) Isolation and characterization of cellulose nanocrystals from garlic skin. Mater Lett 129:20–23. https://doi.org/10.1016/j.matlet.2014.05.019

    Article  CAS  Google Scholar 

  20. Oun AA, Rhim JW (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150. https://doi.org/10.1016/j.matlet.2016.01.052

    Article  CAS  Google Scholar 

  21. Frone AN, Chiulan I, Panaitescu DM, Nicolae CA, Ghiurea M, Galan AM (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett 194:160–163. https://doi.org/10.1016/j.matlet.2017.02.05

    Article  CAS  Google Scholar 

  22. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Bioresour Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. https://doi.org/10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  24. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85. https://doi.org/10.1016/j.carres.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  25. Sánchez R, Espinosa E, Domínguez-Robles J, Loaiza JM, Rodríguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033. https://doi.org/10.1016/j.ijbiomac.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  26. Singh M, Kaushik A, Ahuja D (2016) Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohydr Polym 150:48–56. https://doi.org/10.1016/j.carbpol.2016.04.109

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Lu Y, Aguedo M, Jacquet N, Ouyang C, He W, Yan C, Bai W, Guo R, Goffin D, Song J (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustainable Chem Eng 5:6183–6191. https://doi.org/10.1021/acssuschemeng.7b01108

    Article  CAS  Google Scholar 

  28. Shamsabadi MA, Behzad T, Bagheri R (2015) Optimization of acid hydrolysis conditions to improve cellulose nanofibers extraction from wheat straw. Fiber Polym 16:579–584. https://doi.org/10.1007/s12221-015-0579-7

    Article  CAS  Google Scholar 

  29. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. https://doi.org/10.1016/j.biortech.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  30. Cherian BM, Leão AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. https://doi.org/10.1016/j.carbpol.2010.03.046

    Article  CAS  Google Scholar 

  31. Nuruddin M, Tcherbi-Narteh A, Hosur M, Chowdhury RA, Jeelani S, Gichuhi P (2013) Cellulose microfibrils extracted from wheat straw: a novel approach. SAMPE Tech Conf Proc. Wichita, KS, October 21–24

  32. Barbash VA, Yaschenko OV, Shniruk OM (2017) Preparation and properties of nanocellulose from organosolv straw pulp. Nanoscale Res Lett 12:241. https://doi.org/10.1186/s11671-017-2001-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049. https://doi.org/10.1016/j.carbpol.2016.10.069

    Article  CAS  PubMed  Google Scholar 

  34. Jose J, Thomas V, John J, Mathew RM, Salam JA, Jose G, Abraham R (2021) Effect of temperature and frequency on the dielectric properties of cellulose nanofibers from cotton. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021-06624-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Institute of Technology, Kurukshetra, India, for providing all the facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

PN: conceptualization, methodology, investigation, writing—original draft preparation. RPC: supervision, reviewing and editing.

Corresponding author

Correspondence to Poonam Nehra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehra, P., Chauhan, R.P. Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran Polym J 31, 771–778 (2022). https://doi.org/10.1007/s13726-022-01040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01040-0

Keywords

Navigation