Skip to main content
Log in

Eco-friendly natural rubber–silver (NR–Ag) composites for photo-assisted degradation of methyl orange dye

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

An environmental friendly, low cost composite for the photo-assisted degradation of methyl orange (MO) is proposed. Here, natural rubber–silver (NR–Ag) composites are formed through soft thermal reduction. The characteristics of the NR–Ag composites were investigated using UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The deposition of Ag on the surface of natural rubber was proven by the XRD diffraction peaks, attributed to metallic Ag and the appearance of the surface plasmon resonance of Ag, at ~ 420–460 nm in the UV–vis spectrum. The degradation of MO dye by NR–Ag composite under UV light source showed positive results for the degradation of dye even with minute amounts of Ag content. The degradation mechanism of MO involved the generation of hydroxyl radicals from the UV-irradiated NR–Ag composite by the formation of superoxide species as the important radical intermediate. Several parameters such as the Ag salt concentration and pH of the MO dye were investigated. Complete degradation of MO was achieved when the composites containing 2 × 10−3 wt% of Ag (NR–Ag4) were employed at pH 3. Under this condition, complete degradation occurred within 30 min. Kinetic studies were conducted to understand the degradation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oladipo AA, Gazi M, Yilmaz E (2015) Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: selectivity factor and Box-Behnken process design. Chem Eng Res Des 104:264–279

    Article  CAS  Google Scholar 

  2. Hazzaa R, Hussein M (2015) Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environ Technol Innov 4:36–51

    Article  Google Scholar 

  3. Konicki W, Aleksandrzak M, Moszyński D, Mijowska E (2017) Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J Colloid Interf Sci 496:188–200

    Article  CAS  Google Scholar 

  4. Zhang J, Fu D, Gao H, Deng L (2011) Mechanism of enhanced photocatalysis of TiO2 by Fe3+ in suspensions. Appl Surf Sci 258:1294–1299

    Article  CAS  Google Scholar 

  5. Atchudan R, Edison TNJI, Perumal S, Shanmugam M, Lee YR (2017) Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J Photochem Photobiol A 337:100–111

    Article  CAS  Google Scholar 

  6. Li J, Xu Y, Liu Y, Wu D, Sun Y (2004) Synthesis of hydrophilic ZnS nanocrystals and their application in photocatalytic degradation of dye pollutants. China Particuol 2:266–269

    Article  CAS  Google Scholar 

  7. Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloid Surf B 103:658–661

    Article  CAS  Google Scholar 

  8. Ganapathy Selvam G, Sivakumar K (2015) Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux Appl Nanosci 5:617–622

    Article  CAS  Google Scholar 

  9. Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl 2014:1–8

    Article  Google Scholar 

  10. Murugadoss A, Chattopadhyay A (2007) A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19:015603

    Article  Google Scholar 

  11. Huang H, Ni X, Loy G, Chew C, Tan K, Loh F, Deng J, Xu G (1996) Photochemical formation of silver nanoparticles in poly (N-vinylpyrrolidone). Langmuir 12:909–912

    Article  CAS  Google Scholar 

  12. Hariprasad E, Radhakrishnan T (2010) A highly efficient and extensively reusable “Dip Catalyst” based on a silver-nanoparticle-embedded polymer thin film. Chem-Eur J 16:14378–14384

    Article  CAS  Google Scholar 

  13. Afzal AB, Akhtar M, Nadeem M, Ahmad M, Hassan M, Yasin T, Mehmood M (2008) Structural and electrical properties of polyaniline/silver nanocomposites. J Phys D Appl Phys 42:015411

    Article  Google Scholar 

  14. Poletti Papi MA, Caetano FR, Bergamini MF, Marcolino-Junior LH (2017) Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination. Mater Sci Eng C 75:88–94

    Article  CAS  Google Scholar 

  15. Chen X (2010) Noble metal photocatalysts under visible light and UV light irradiation, PhD Thesis, Queensland University of Technology

  16. Zhu H, Chen X, Zheng Z, Ke X, Jaatinen E, Zhao J, Guo C, Xie T, Wang D (2009) Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Commun 48:7524–7526

    Article  Google Scholar 

  17. Luo Y, Qian J, He D, Tao J, Zhao P, Gong W, Zhang Z, Peng Z, Chen X, Wang H, Dan Y (2016) Preparation of natural rubber/silica nanocomposites using one- and two-dimensional dispersants by latex blending process. Polym Compos. https://doi.org/10.1002/pc.24081

    Google Scholar 

  18. Hayeemasae N, Rathnayake WGIU, Ismail H (2017) Nano-sized TiO2-reinforced natural rubber composites prepared by latex compounding method. J Vinyl Addit Technol 23:200–209

    Article  CAS  Google Scholar 

  19. Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F, Liu L (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos A 70:35–44

    Article  CAS  Google Scholar 

  20. Meera A, Said S, Grohens Y, Luyt A, Thomas S (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48:3410–3416

    Article  CAS  Google Scholar 

  21. Ponnamma D, Ramachandran R, Hussain S, Rajaraman R, Amarendra G, Varughese KT, Thomas S (2015) Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites. Compos A 77:164–171

    Article  CAS  Google Scholar 

  22. Rattanasom N, Prasertsri S (2012) Mechanical properties, gas permeability and cut growth behaviour of natural rubber vulcanizates: influence of clay types and clay/carbon black ratios. Polym Test 31:645–653

    Article  CAS  Google Scholar 

  23. Rezende CA, Bragança FC, Doi TR, Lee L-T, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polymer 51:3644–3652

    Article  CAS  Google Scholar 

  24. Sookyung U, Nakason C, Thaijaroen W, Vennemann N (2014) Influence of modifying agents of organoclay on properties of nanocomposites based on natural rubber. Polym Test 33:48–56

    Article  CAS  Google Scholar 

  25. Ma Y, Zeng M, He J, Duan L, Wang J, Li J, Wang J (2011) Syntheses and characterizations of cobalt doped mesoporous alumina prepared using natural rubber latex as template and its catalytic oxidation of tetralin to tetralone. Appl Catal A 396:123–128

    Article  CAS  Google Scholar 

  26. Utara S, Klinkaewnarong J (2015) Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent. Ceram Int 41:14860–14867

    Article  CAS  Google Scholar 

  27. Seentrakoon B, Junhasavasdikul B, Chavasiri W (2013) Enhanced UV-protection and antibacterial properties of natural rubber/rutile-TiO2 nanocomposites. Polym Degrad Stab 98:566–578

    Article  CAS  Google Scholar 

  28. Zhang Y, Xue X, Zhang Z, Liu Y, Li G (2014) Morphology and antibacterial properties of natural rubber composites based on biosynthesized nanosilver. J Appl Polym Sci 131:40746

    Google Scholar 

  29. Suwatthanarak T, Than-ardna B, Danwanichakul D, Danwanichakul P (2016) Synthesis of silver nanoparticles in skim natural rubber latex at room temperature. Mater Lett 168:31–35

    Article  CAS  Google Scholar 

  30. Barboza-Filho CG, Cabrera FC, Dos Santos RJ, De Saja Saez JA, Job AE (2012) The influence of natural rubber/Au nanoparticle membranes on the physiology of Leishmania brasiliensis. Exp Parasitol 130:152–158

    Article  CAS  Google Scholar 

  31. Sriwong C, Wongnawa S, Patarapaiboolchai O (2012) Rubber sheet strewn with TiO2 particles: photocatalytic activity and recyclability. J Environ Sci 24:464–472

    Article  CAS  Google Scholar 

  32. Sriwong C, Wongnawa S, Patarapaiboolchai O (2008) Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability. Catal Commun 9:213–218

    Article  CAS  Google Scholar 

  33. Stropa JM, Herrero AS, Oliveira SC, Cavalheiro AA, Dantas RF, Oliveira SL, Machulek A Jr, Oliveira LCS (2016) Use of natural rubber membranes as support for powder TiO2 and Ag/TiO2 photocatalysts. J Brazil Chem Soc 27:575–583

    CAS  Google Scholar 

  34. Jin M, Zhang X, Emeline AV, Numata T, Murakami T, Fujishima A (2008) Surface modification of natural rubber by TiO2 film. Surf Coat Technol 202:1364–1370

    Article  CAS  Google Scholar 

  35. Marković D, Šaponjić Z, Radoičić M, Radetić T, Vodnik V, Potkonjak B, Radetić M (2015) Sonophotocatalytic degradation of dye C.I. acid orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric. Ultrason Sonochem 24:221–229

    Article  Google Scholar 

  36. Fathinia M, Khataee AR, Zarei M, Aber S (2010) Comparative photocatalytic degradation of two dyes on immobilized TiO2 nanoparticles: effect of dye molecular structure and response surface approach. J Mol Catal A 333:73–84

    Article  CAS  Google Scholar 

  37. Joseph S, Mathew B (2015) Facile synthesis of silver nanoparticles and their application in dye degradation. Mater Sci Eng B 195:90–97

    Article  CAS  Google Scholar 

  38. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67

    Article  CAS  Google Scholar 

  39. Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283

    Article  CAS  Google Scholar 

  40. Hong KH, Park JL, Sul IH, Youk JH, Kang TJ (2006) Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci B Polym Phys 44:2468–2474

    Article  CAS  Google Scholar 

  41. Abu Bakar M, Tan WL, Azizi NJ, Abu Bakar NHH (2006) Synthesis of modified natural rubber-stabilised silver organosols via liquid-to-liquid transfer techniques. J Rubber Res 9:193–203

    CAS  Google Scholar 

  42. Basavegowda N, Idhayadhulla A, Lee YR (2014) Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Mater Sci Eng C 43:58–64

    Article  CAS  Google Scholar 

  43. Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta Part A 78:899–904

    Article  Google Scholar 

  44. Abu Bakar M, Ismail J, Teoh CH, Tan WL, Ong S (2008) Epoxidised natural rubber-stabilised gold colloids prepared in an organic mixture of toluene and 2-propanol. J Rubber Res 11:196–208

    CAS  Google Scholar 

  45. Katime I, Mendizábal E (2010) Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Mater Sci Appl 1:162–167

    CAS  Google Scholar 

  46. Chaturvedi A, Bajpai AK, Bajpai J (2015) Preparation and characterization of poly(vinyl alcohol) cryogel-silver nanocomposites and evaluation of blood compatibility, cytotoxicity, and antimicrobial behaviors. Polym Compos 36:1983–1997

    Article  CAS  Google Scholar 

  47. Khan AU, Yuan Q, Wei Y, Khan ZuH, Tahir K, Khan SU, Ahmad A, Khan S, Nazir S, Khan FU (2016) Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. J Photochem Photobiol B 159:49–58

    Article  Google Scholar 

  48. Chen X, Zheng Z, Ke X, Jaatinen E, Xie T, Wang D, Guo C, Zhao J, Zhu H (2010) Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem 12:414–419

    Article  CAS  Google Scholar 

  49. Wu Z-C, Zhang Y, Tao T-X, Zhang L, Fong H (2010) Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl Surf Sci 257:1092–1097

    Article  CAS  Google Scholar 

  50. Tan WL, Abu Bakar NHH, Abu Bakar M (2015) Catalytic reduction of p-nitrophenol using chitosan stabilized copper nanoparticles. Catal Lett 145:1626–1633

    Article  CAS  Google Scholar 

  51. Shih Y-H, Tso C-P, Tung L-Y (2010) Rapid degradation of methyl orange with nanoscale zerovalent iron particles. Nanotechnology 7:16–17

    Google Scholar 

  52. El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  Google Scholar 

  53. Flory JR (2012) Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modelling. Air University, Ohio

    Google Scholar 

  54. Andronic L, Duta A (2008) The influence of TiO2 powder and film on the photodegradation of methyl orange. Mater Chem Phys 112:1078–1082

    Article  CAS  Google Scholar 

  55. Darroudi M, Ahmad MB, Shameli K, Abdullah AH, Ibrahim NA (2009) Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci 11:1621–1624

    Article  CAS  Google Scholar 

  56. Badr Y, Mahmoud MA (2007) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solids 68:413–419

    Article  CAS  Google Scholar 

  57. Nawi MA, Sabar S, Sheilatina (2012) Photocatalytic decolourisation of reactive red 4 dye by an immobilised TiO2/chitosan layer by layer system. J Colloid Interf Sci 372:80–87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Malaysian Rubber Board for the gift of natural rubber latex as well as the Ministry of Education, Malaysia, for the FRGS Grant 203/PKIMIA/6711419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Hana Hanif Abu Bakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Bakar, N.H.H., Muda, N.H., Tan, W.L. et al. Eco-friendly natural rubber–silver (NR–Ag) composites for photo-assisted degradation of methyl orange dye. Iran Polym J 27, 23–32 (2018). https://doi.org/10.1007/s13726-017-0580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0580-7

Keywords

Navigation