Skip to main content
Log in

Maximizing the yield of water-soluble cellouronic acid sodium salt with high carboxyl content by 4-acetamide-TEMPO mediated oxidation of parenchyma cellulose from bagasse pith

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Parenchyma cellulose, isolated from bagasse pith BP, was utilized as an alternative resource for preparation of soluble cellouronic acid sodium salt (SCA) by selective oxidation with the catalytic amounts of 4-acetamide-TEMPO and NaClO, in which NaClO2 was used as a primary oxidant in an aqueous condition. The yield and carboxyl content of SCA were measured as a function of NaClO2 content, 4-acetamide-TEMPO loading, oxidation temperature, initial pH, and reaction time, and optimized by an orthogonal test with the objective of achieving a maximum yield with high carboxyl content. An optimal SCA yield of 71.0 % with 32.92 % carboxyl content was found under the conditions of NaClO2 dosage of 16 mmol/g, 4-acetamide-TEMPO loading of 0.20 mmol/g, and oxidation temperature of 50 °C in acetate buffer at pH 5.5 for 72 h. The structure and morphology of both parenchyma cellulose and its oxidized product were further characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectronic spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). These techniques confirmed that parenchyma cellulose from bagasse pith was successively modified by an effective TEMPO-derivative-catalyzed oxidation process. The finding of this study might provide guidance in maximizing the yield of SCA from parenchyma cells utilizing the 4-acetamide-TEMPO/NaClO/NaClO2 system. Considering the simple preparation process and favorable SCA property, this BP parenchyma cellulose showed unique characteristics with a great promise for high-valued modification and application in the areas of advanced and functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alves L, Medronho B, Fowler P, Antunes FE, Fernández-García MP, Ventura J, Araújo JP, Romano A, Lindman B (2015) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq 210:106–112

    Article  CAS  Google Scholar 

  2. Huang CF, Chen JK, Tsai TY, Hsieh YA, Lin KYA (2015) Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP. Polymer 72:395–405

    Article  CAS  Google Scholar 

  3. Gamelas JAF, Pedrosa J, Lourenco AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreira PJT (2015) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33

    Article  CAS  Google Scholar 

  4. Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616

    Article  CAS  Google Scholar 

  5. Chen WS, Yu HP, Liu YX (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80 nm from bamboo fibers. Carbohydr Polym 86:453–461

    Article  CAS  Google Scholar 

  6. Aracri E, Valls C, Vidal T (2012) Paper strength improvement by oxidative modification of sisial cellulose fibers with laccase-TEMPO system: influence of the process variables. Carbohydr Polym 88:830–837

    Article  CAS  Google Scholar 

  7. Shin HK, Jeun JP, Kim HB, Kang PH (2012) Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem 81:936–940

    Article  CAS  Google Scholar 

  8. Sbiai A, Kaddami H, Sautereau H, Maazouz A, Fleury E (2011) Tempo-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydr Polym 86:1445–1450

    Article  CAS  Google Scholar 

  9. Tian MW, Qu LJ, Zhang XS, Zhang K, Zhu SF, Guo XQ, Han GT, Tang XN, Sun YN (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 111:456–462

    Article  CAS  Google Scholar 

  10. Tian MW, Hu XL, Qu LJ, Zhu SF, Sun YN, Han GT (2016) Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon 96:1167–1174

    Article  Google Scholar 

  11. Jiang M, Zhao MM, Zhou ZW, Huang T, Chen XL, Wang Y (2011) Isolation of cellulose with ionic liquid from steam exploded rice straw. Ind Crop Prod 33:734–738

    Article  CAS  Google Scholar 

  12. Fan GZ, Wang M, Liao CJ, Fang T, Li JF, Zhou RH (2013) Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydr Polym 94:71–76

    Article  CAS  Google Scholar 

  13. Zhong C, Wang CM, Huang F, Jia HH, Wei P (2013) Wheat straw cellulose dissolution and isolation by tetra-n-butylammonium hydroxide. Carbohydr Polym 94:38–45

    Article  CAS  Google Scholar 

  14. Gao X, Chen KL, Zhang H, Peng LC, Liu QX (2014) Isolation and characterization of cellulose obtained from bagasse pith by oxygen-containing agents. BioResources 9:4094–4107

    Google Scholar 

  15. Yu H, Liu RG, Shen DW, Wu ZH, Huang Y (2008) Arrangement of cellulose microfibrils in the wheat straw cell wall. Carbohydr Polym 72:122–127

    Article  CAS  Google Scholar 

  16. Coseri S, Nistor G, Fras S, Strnad S, Harabagiu V, Simionescu BC (2009) Mild and selective oxidation of cellulose fibers in the presence of N-Hydroxyphthalimide. Biomacromolecules 10:2294–2299

    Article  CAS  Google Scholar 

  17. Coseri S, Biliuta G, Simionescu BC, Kleinschek KS, Ribitsch V, Harabagiu V (2013) Oxidized cellulose-survey of the most recent achievements. Carbohydr Polym 93:207–215

    Article  CAS  Google Scholar 

  18. Kumar V, Yang TR (2002) HNO3/H3PO4-NANO2 mediated oxidation of cellulose—preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403–412

    Article  CAS  Google Scholar 

  19. Xu YH, Liu X, Liu XL, Tan JL, Zhu HL (2014) Influence of HNO3/H3PO4-NANO2 mediated oxidation on the structure and properties of cellulose fibers. Carbohydr Polym 111:955–963

    Article  CAS  Google Scholar 

  20. Kumar V, Deshpande GS (2001) Noncovalent immobilization of bovine serum albumin on oxidized cellulose. Artif Cells Blood Substit Biothechnol 29:203–212

    Article  CAS  Google Scholar 

  21. Zhou YM, Fu SY, Zhang LL, Zhan HY (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr Polym 97:429–435

    Article  CAS  Google Scholar 

  22. Xu YH, Qiu C, Zhang XL, Zhang WW (2014) Crosslinking chitosan into HNO3/H3PO4-NANO2 oxidized cellulose fabrics as antibacterial-finished material. Carbohydr Polym 112:186–194

    Article  CAS  Google Scholar 

  23. Hirota M, Tamura N, Saito T, Isogai A (2009) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335

    Article  CAS  Google Scholar 

  24. Zhang K, Fischer S, Geissler A, Brendler E (2012) Analysis of carboxylate groups in oxidized never-dried cellulose II catalyzed by TEMPO and 4-acetamide-TEMPO. Carbohydr Polym 87:894–900

    Article  CAS  Google Scholar 

  25. Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234

    Article  CAS  Google Scholar 

  26. Biliuta G, Fras L, Strnad S, Harabagiu V, Coseri S (2010) Oxidation of cellulose fibers mediated by nonpersistent nitroxyl radicals. J Polym Sci A Polym Chem 48:4790–4799

    Article  CAS  Google Scholar 

  27. Biliuta G, Fras L, Harabagiu V, Coseri S (2011) Mild oxidation of cellulose fibers using dioxygen as ultimate oxidizing agent. Digest J Nanomater Biostruct 6:291–297

    Google Scholar 

  28. Coseri S, Biliuta G, Zemljič LF, Srndovic JS, Larsson PT, Strnad S, Kreže T, Naderi A, Lindström T (2015) One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC Adv 5:85889–85897

    Article  CAS  Google Scholar 

  29. Gao X, Chen KL, Zhang H, Peng LC (2014) The preparation of soluble cellouronic acid sodium salt by 4-acetamide-TEMPO mediated oxidation of ultrasound-pretreated parenchyma cellulose from bagasse pith. Arch Acoust 39:267–275

    Google Scholar 

  30. Iwamoto S, Kai WH, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398

    Article  CAS  Google Scholar 

  31. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  32. Coseri S, Biliuta G (2012) Bromide-free oxidizing system for carboxylic moiety formation in cellulose chain. Carbohydr Polym 90:1415–1419

    Article  CAS  Google Scholar 

  33. Henrique MA, Neto WPF, Silvério HA, Martins DF, Gurgel LVA, Barud HS, Morais LC, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrstals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crop Prod 76:128–140

    Article  CAS  Google Scholar 

  34. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  Google Scholar 

  35. Yue YY, Han JQ, Han GP, Zhang QG, French AD, Wu QL (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundations of China (Grant Numbers 21276119 and 51363013) and Analysis Foundations of Kunming University of Science and Technology (Grant Numbers 20140853 and 20140827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Gao, X., Chen, KL. et al. Maximizing the yield of water-soluble cellouronic acid sodium salt with high carboxyl content by 4-acetamide-TEMPO mediated oxidation of parenchyma cellulose from bagasse pith. Iran Polym J 25, 465–474 (2016). https://doi.org/10.1007/s13726-016-0438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0438-4

Keywords

Navigation