Skip to main content
Log in

Highlighting the Role of Obesity and Insulin Resistance in Type 1 Diabetes and Its Associated Cardiometabolic Complications

  • The Obesity Epidemic: Causes and Consequences (A Cameron and K Backholer, Section Editors)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This narrative review appraises research data on the potentially harmful effect of obesity and insulin resistance (IR) co-existence with type 1 diabetes mellitus (T1DM)-related cardiovascular (CVD) complications and evaluates possible therapeutic options.

Recent Findings

Obesity and IR have increasingly been emerging in patients with T1DM. Genetic, epigenetic factors, and subcutaneous insulin administration are implicated in the pathogenesis of this coexistence. Accumulating evidence implies that the concomitant presence of obesity and IR is an independent predictor of worse CVD outcomes.

Summary

The prevalence of obesity and IR has increased in patients with T1DM. This increase can be partly attributed to general population trends but, additionally, to iatrogenic weight gain caused by insulin treatment. This association might be the missing link explaining the excess CVD burden observed in patients with T1DM despite optimal glycemic control. Data on newer agents for type 2 diabetes mellitus (T2DM) treatment are unraveling novel ways to challenge this aggravating coexistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AER:

Albumin excretion rate

CVD:

Cardiovascular disease

CAD:

Coronary artery disease

CACTI:

Calcification in Type 1 Diabetes Mellitus Study

DCCT:

Diabetes Control and Complications Trial

DD:

Double diabetes

EDC:

Pittsburgh Epidemiology of Diabetes Complications Study

EDIC:

Epidemiology of Diabetes Interventions and Complications study

eGDR:

Estimated glucose disposal rate

FinnDiane:

Finnish Diabetic Nephropathy Study

FTO:

Fat mass and Obesity-associated

GADA:

Glutamic acid decarboxylase antibodies

GFR:

Glomerular filtration rate

GLP-1:

Glucagon-like peptide 1 agonists

GSK-MODY:

Glucokinase Enzyme Related-Maturity-Onset Diabetes of the Young

HF:

Heart failure

HOMA:

Homeostatic model assessment

IDF:

International Diabetes Federation

LADA:

Latent autoimmune diabetes in adults

LDL-C:

Low-density lipoprotein cholesterol

MACE:

Major adverse cardiovascular events

MCR:

Melanocortin 4 receptor gene

MDI:

Multiple daily injections

miRNA:

MicroRNAs

MS:

Metabolic syndrome

NCEP:

National Cholesterol Education Program

NFκB:

Nuclear factor-κB

IR:

Insulin resistance

IMT:

Carotid intima-media thickness insulin resistance

RCT:

Randomized controlled trial

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

SGLT2i:

Sodium-glucose cotransporter 2 inhibitors

SNP:

Single nucleotide polymorphism

WHR:

Waist to hip ratio

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Poynton FJ. Five cases of diabetes mellitus in young children. Br Med J. 1923;1(3242):277–9. https://doi.org/10.1136/bmj.1.3242.277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Eeg-Olofsson K, Cederholm J, Nilsson PM, et al. Glycemic control and cardiovascular disease in 7,454 patients with type 1 diabetes: an observational study from the Swedish National Diabetes Register (NDR). Diabetes Care. 2010. https://doi.org/10.2337/dc10-0398 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hovind P, Tarnow L, Rossing K, et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care. 2003. https://doi.org/10.2337/diacare.26.4.1258 Published online.

    Article  PubMed  Google Scholar 

  4. Fullerton B, Jeitler K, Seitz M, Horvath K, Berghold A, Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2014. https://doi.org/10.1002/14651858.CD009122.pub2 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes Targets Ther. 2019. https://doi.org/10.2147/DMSO.S216791 Published online.

    Article  Google Scholar 

  6. Minges KE, Whittemore R, Weinzimer SA, Irwin ML, Redeker NS, Grey M. Correlates of overweight and obesity in 5529 adolescents with type 1 diabetes: The T1D Exchange Clinic Registry. Diabetes Res Clin Pract. 2017. https://doi.org/10.1016/j.diabres.2017.01.012 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Baskaran C, Volkening LK, Diaz M, Laffel LM. A decade of temporal trends in overweight/obesity in youth with type 1 diabetes after the Diabetes Control and Complications Trial. Pediatr Diabetes. 2015;16(4):263–70. https://doi.org/10.1111/pedi.12166.

    Article  CAS  PubMed  Google Scholar 

  8. Livingstone SJ, Levin D, Looker HC, et al. Estimated life expectancy in a scottish cohort with type 1 diabetes, 2008–2010. J Am Med Assoc. 2015. https://doi.org/10.1001/jama.2014.16425 Published online.

    Article  Google Scholar 

  9. Huo L, Harding JL, Peeters A, Shaw JE, Magliano DJ. Life expectancy of type 1 diabetic patients during 1997–2010: a national Australian registry-based cohort study. Diabetologia. 2016. https://doi.org/10.1007/s00125-015-3857-4 Published online.

    Article  PubMed  Google Scholar 

  10. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001. https://doi.org/10.1007/PL00002934 Published online.

    Article  PubMed  Google Scholar 

  11. Rawshani A, Sattar N, Franzén S, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018. https://doi.org/10.1016/S0140-6736(18)31506-X Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Shamoon H, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993 Published online.

  13. The Diabetes Control, Complications Trial (DCCT) Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the diabetes control and complications trial. Am J Cardiol. 1995. https://doi.org/10.1016/S0002-9149(99)80683-3 Published online.

    Article  Google Scholar 

  14. Nathan DM, Cleary PA, Backlund JYC, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005. https://doi.org/10.1056/NEJMoa052187 Published online.

    Article  PubMed  Google Scholar 

  15. Wadén J, Forsblom C, Thorn LM, Gordin D, Saraheimo M, Groop PH. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes. 2009. https://doi.org/10.2337/db09-0693 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Klein BEK, Klein R, McBride PE, et al. Cardiovascular disease, mortality, and retinal microvascular characteristics in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Arch Intern Med. 2004. https://doi.org/10.1001/archinte.164.17.1917 Published online.

    Article  PubMed  Google Scholar 

  17. •• Orchard TJ, Olson JC, Erbey JR, et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh epidemiology of diabetes complications study. Diabetes Care. 2003. https://doi.org/10.2337/diacare.26.5.1374 Published online. This prospective cohort study showed that IR, as measured by the eGDR, was a strong predictor of hard CVD endpoints, such as MI or CAD death in people with T1D during the 10-year follow-up period.

    Article  PubMed  Google Scholar 

  18. Miller RG, Costacou T, Orchard TJ. Risk factor modeling for cardiovascular disease in type 1 diabetes in the pittsburgh epidemiology of diabetes complications (EDC) study: a comparison with the diabetes control and complications trial/epidemiology of diabetes interventions and complication. Diabetes. 2019. https://doi.org/10.2337/db18-0515 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lind M, Svensson AM, Kosiborod M, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014. https://doi.org/10.1056/NEJMoa1408214 Published online.

    Article  PubMed  Google Scholar 

  20. Finne P, Reunanen A, Stenman S, Groop PH, Grönhagen-Riska C. Incidence of end-stage renal disease in patients with type 1 diabetes. J Am Med Assoc. 2005. https://doi.org/10.1001/jama.294.14.1782 Published online.

    Article  Google Scholar 

  21. Hero C, Svensson AM, Gidlund P, Gudbjörnsdottir S, Eliasson B, Eeg-Olofsson K. LDL cholesterol is not a good marker of cardiovascular risk in Type 1 diabetes. Diabet Med. 2016. https://doi.org/10.1111/dme.13007 Published online.

    Article  PubMed  Google Scholar 

  22. Soedamah-Muthu SS, Chaturvedi N, Witte DR, Stevens LK, Porta M, Fuller JH. Relationship between risk factors and mortality in type 1 diabetic patients in europe: The eurodiab prospective complications study (PCS). Diabetes Care. 2008. https://doi.org/10.2337/dc08-0107 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Costacou T, Evans RW, Orchard TJ. High-density lipoprotein cholesterol in diabetes: Is higher always better? J Clin Lipidol. 2011. https://doi.org/10.1016/j.jacl.2011.06.011 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  24. De Ferranti SD, De Boer IH, Fonseca V, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2014. https://doi.org/10.2337/dc14-1720 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hamman RF, Bell RA, Dabelea D, et al. The SEARCH for diabetes in youth study: Rationale, findings, and future directions. Diabetes Care. 2014. https://doi.org/10.2337/dc14-0574 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Karamanos B, Porta M, Songini M, et al. Different risk factors of microangiopathy in patients with Type I diabetes mellitus of short versus long duration. The EURODIAB IDDM Complications Study. Diabetologia. 2000. https://doi.org/10.1007/s001250050053 Published online.

    Article  PubMed  Google Scholar 

  27. United States Department of Health and Human Services. The Health Consequences of smoking–50 years of progress A Report of the Surgeon General. United States Department of Health and Human Services; 2014. Published online.

    Google Scholar 

  28. •• Rawshani A, Rawshani A, Franzén S, et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2017. https://doi.org/10.1161/CIRCULATIONAHA.116.025961 Published online. Recent large Swedish National Diabetes Register study, with a follow-up time of 10 years, showing that compared to the control population, people with T1D have twice the risk for MI, even after attaining the corresponding targets for all traditional CVD-related risk factors.

    Article  PubMed Central  PubMed  Google Scholar 

  29. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2015. https://doi.org/10.2337/dc15-S005 Published online.

    Article  Google Scholar 

  30. Redondo MJ, Rodriguez LM, Escalante M, O’Brian Smith E, Balasubramanyam A, Haymond MW. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes. Pediatr Diabetes. 2012. https://doi.org/10.1111/j.1399-5448.2012.00875.x Published online.

    Article  PubMed  Google Scholar 

  31. Dabelea D, D’Agostino RB, Mayer-Davis EJ, et al. Testing the accelerator hypothesis: Body size, β-cell function, and age at onset of type 1 (autoimmune) diabetes. Diabetes Care. 2006. https://doi.org/10.2337/diacare.29.02.06.dc05-1339 Published online.

    Article  PubMed  Google Scholar 

  32. • Knerr I, Wolf J, Reinehr T, et al. The “accelerator hypothesis”: relationship between weight, height, body mass index and age at diagnosis in a large cohort of 9,248 German and Austrian children with type 1 diabetes mellitus. Diabetologia. 2005. https://doi.org/10.1007/s00125-005-0033-2 Published online. The "accelaartor hypothesis" postulates that the increased insulin demands caused by obesity lead to faster deterioration of beta cell function in people predisposed to develop T1D. With data from 116 diabetes clinics, this prospective observational study showed that higher BMI was associated with earlier T1D onset in youth and adolescents aged 0–20 years.

    Article  PubMed  Google Scholar 

  33. Umpierrez GE. Ketosis-prone type 2 diabetes: time to revise the classification of diabetes. Diabetes Care. 2006. https://doi.org/10.2337/dc06-1870 Published online.

    Article  PubMed  Google Scholar 

  34. Østergaard JA, Laugesen E, Leslie RD. Should there be concern about autoimmune diabetes in adults? Current Evidence and Controversies. Curr Diab Rep. 2016. https://doi.org/10.1007/s11892-016-0780-0 Published online.

    Article  PubMed  Google Scholar 

  35. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes. Diabetologia. 2001. https://doi.org/10.1007/s001250100548 Published online.

    Article  PubMed  Google Scholar 

  36. Patterson CC, Dahlquist GG, Gyürüs E, et al. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009. https://doi.org/10.1016/S0140-6736(09)60568-7 Published online.

    Article  PubMed  Google Scholar 

  37. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020. https://doi.org/10.1016/j.jhep.2020.03.039 Published online.

    Article  PubMed  Google Scholar 

  38. Bonadonna RC, Cucinotta D, Fedele D, Riccardi G, Tiengo A. The metabolic syndrome is a risk indicator of microvascular and macrovascular complications in diabetes: results from Metascreen, a multicenter diabetes clinic-based survey. Diabetes Care. 2006. https://doi.org/10.2337/dc06-0942 Published online.

    Article  PubMed  Google Scholar 

  39. Teupe B, Bergis K. Epidemiological evidence for “double diabetes.” Lancet. 1991. https://doi.org/10.1016/0140-6736(91)90988-2 Published online.

    Article  PubMed  Google Scholar 

  40. Libman IM, Becker DJ. Coexistence of type 1 and type 2 diabetes mellitus: “Double” diabetes? Pediatr Diabetes. 2003. https://doi.org/10.1034/j.1399-5448.2003.00012.x Published online.

    Article  PubMed  Google Scholar 

  41. Thorn LM, Forsblom C, Waden J, et al. Effect of parental type 2 diabetes on offspring with type 1 diabetes. Diabetes Care. 2009. https://doi.org/10.2337/dc08-0472 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Purnell JQ, Dev RK, Steffes MW, et al. Relationship of family history of type 2 diabetes, hypoglycemia, and autoantibodies to weight gain and lipids with intensive and conventional therapy in the diabetes control and complications trial. Diabetes. 2003. https://doi.org/10.2337/diabetes.52.10.2623 Published online.

    Article  PubMed  Google Scholar 

  43. Erbey JR, Kuller LH, Becker DJ, Orchard TJ. The association between a family history of type 2 diabetes and coronary artery disease in a type 1 diabetes population. Diabetes Care. 1998. https://doi.org/10.2337/diacare.21.4.610 Published online.

    Article  PubMed  Google Scholar 

  44. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011. https://doi.org/10.1186/1741-7015-9-48 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  45. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization. 1999. https://apps.who.int/iris/handle/10665/66040.

  46. Thorn LM, Forsblom C, Wadén J, et al. Metabolic syndrome as a risk factor for cardiovascular disease, mortality, and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2009. https://doi.org/10.2337/dc08-2022 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Finegood DT, Bergman RN, Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987. https://doi.org/10.2337/diab.36.8.914 Published online.

    Article  PubMed  Google Scholar 

  48. Williams KV, Erbey JR, Becker D, Arslanian S, Orchard TJ. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000. https://doi.org/10.2337/diabetes.49.4.626 Published online.

    Article  PubMed  Google Scholar 

  49. •• Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the diabetes control and complications trial. Diabetes Care. 2007. https://doi.org/10.2337/dc06-1982 Published online. Data analysis from this RCT has shown that higher IR at baseline predicted both the development of micro-and macrovascular disease in people with T1D. Further on, it also found an increase in MS prevalence among study participants, particularly those receiving intensive insulin treatment, during the nine years of follow-up.

    Article  PubMed  Google Scholar 

  50. The IDF consensus worldwide definition of the metabolic syndrome. Obe Metab. 2005. https://doi.org/10.14341/2071-8713-4854 Published online.

  51. Porta M, Sjoelie AK, Chaturvedi N, et al. Risk factors for progression to proliferative diabetic retinopathy in the EURODIAB Prospective Complications Study. Diabetologia. 2001. https://doi.org/10.1007/s001250100030 Published online.

    Article  PubMed  Google Scholar 

  52. Lam YY, Ravussin E. Analysis of energy metabolism in humans: a review of methodologies. Mol Metab. 2016. https://doi.org/10.1016/j.molmet.2016.09.005 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Jacob AN, Salinas K, Adams-Huet B, Raskin P. Potential causes of weight gain in type 1 diabetes mellitus. Diabetes Obes Metab. 2006. https://doi.org/10.1111/j.1463-1326.2005.00515.x Published online.

    Article  PubMed  Google Scholar 

  54. Charlton MR, Nair KS. Role of hyperglucagonemia in catabolism associated with type 1 diabetes: Effects on leucine metabolism and the resting metabolic rate. Diabetes. 1998. https://doi.org/10.2337/diabetes.47.11.1748 Published online.

    Article  PubMed  Google Scholar 

  55. Nair KS. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab. 1987. https://doi.org/10.1210/jcem-64-5-896 Published online.

    Article  PubMed  Google Scholar 

  56. Nair KS, Halliday D, Garrow JS. Increased energy expenditure in poorly controlled Type 1 (insulin-dependent) diabetic patients. Diabetologia. 1984. https://doi.org/10.1007/BF00253494 Published online.

    Article  PubMed  Google Scholar 

  57. Woods SC, Porte D, Bobbioni E, et al. Insulin: Its relationship to the central nervous system and to the control of food intake and body weight. Am J Clin Nutr. 1985. https://doi.org/10.1093/ajcn/42.5.1063 Published online.

    Article  PubMed  Google Scholar 

  58. Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc B Biol Sci. 2006. https://doi.org/10.1098/rstb.2006.1858 Published online.

    Article  Google Scholar 

  59. Geary N, Kissileff HR, Pi-Sunyer FX, Hinton V. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol Regul Integr Comp Physiol. 1992. https://doi.org/10.1152/ajpregu.1992.262.6.r975 Published online.

    Article  Google Scholar 

  60. Arafat AM, Weickert MO, Adamidou A, et al. The impact of insulin-independent, glucagon-induced suppression of total ghrelin on satiety in obesity and type 1 diabetes mellitus. J Clin Endocrinol Metab. 2013. https://doi.org/10.1210/jc.2013-1635 Published online.

    Article  PubMed  Google Scholar 

  61. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care. 2014. https://doi.org/10.2337/dc13-2112 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  62. • Conway B, Miller RG, Costacou T, et al. Temporal patterns in overweight and obesity in Type 1 diabetes. Diabet Med. 2010. https://doi.org/10.1111/j.1464-5491.2010.02956.x Published online. This observational study showed that during the 18 years of follow-up, the prevalence of overweight and obesity significantly increased in participants with T1D. Initiation of intensive insulin treatment regiments during the study was an independent predictor of increased weight gain.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Dubose SN, Hermann JM, Tamborlane WV, et al. Obesity in youth with type 1 diabetes in Germany, Austria, and the United States. J Pediatr. 2015. https://doi.org/10.1016/j.jpeds.2015.05.046 Published online.

    Article  PubMed  Google Scholar 

  64. Buzzetti R, Zampetti S, Pozzilli P. Impact of obesity on the increasing incidence of type 1 diabetes. Diabetes Obes Metab. 2020. https://doi.org/10.1111/dom.14022 Published online.

    Article  PubMed  Google Scholar 

  65. Sands ALP, Higgins LA, Mehta SN, Nansel TR, Lipsky LM, Laffel LMB. Associations of youth and parent weight status with reported versus predicted daily energy intake and hemoglobin A1c in youth with type 1 diabetes mellitus. J Diabetes Sci Technol. 2013. https://doi.org/10.1177/193229681300700131 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Chesi A, Grant SFA. The genetics of pediatric obesity. Trends Endocrinol Metab. 2015. https://doi.org/10.1016/j.tem.2015.08.008 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Loos RJF, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008. https://doi.org/10.1038/ng.140 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Łuczyński W, Fendler W, Ramatowska A, et al. Polymorphism of the FTO gene influences body weight in children with type 1 diabetes without severe obesity. Int J Endocrinol. 2014. https://doi.org/10.1155/2014/630712 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Gu HF, Alvarsson A, Brismar K. The common FTO genetic polymorphism rs9939609 is associated with increased BMI in type 1 diabetes but not with diabetic nephropathy. Biomark Insights. 2010. https://doi.org/10.4137/bmi.s4599 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Luczyński W, Szypowska A, Glowińska-Olszewska B, Szadkowska A, Bossowski A. Disease associated clinical factors and FTO polymorphism: effect on body mass in children with type 1 diabetes mellitus. Pediatr Diabetes. 2014. https://doi.org/10.1111/pedi.12091 Published online.

    Article  PubMed  Google Scholar 

  71. Grant SFA, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006. https://doi.org/10.1038/ng1732 Published online.

    Article  PubMed  Google Scholar 

  72. Redondo MJ, Geyer S, Steck AK, et al. TCF7L2 genetic variants contribute to phenotypic heterogeneity of type 1 diabetes. Diabetes Care. 2018. https://doi.org/10.2337/dc17-0961.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant. 1991.

  74. Smith GD. Mendelian randomization for strengthening causal inference in observational studies: application to gene × environment interactions. Perspect Psychol Sci. 2010. https://doi.org/10.1177/1745691610383505 Published online.

    Article  PubMed  Google Scholar 

  75. Censin JC, Nowak C, Cooper N, Bergsten P, Todd JA, Fall T. Childhood adiposity and risk of type 1 diabetes: a Mendelian randomization study. PLoS Med. 2017. https://doi.org/10.1371/journal.pmed.1002362 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009. https://doi.org/10.1055/s-0029-1237423 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992. https://doi.org/10.1007/BF02221682 Published online.

    Article  PubMed  Google Scholar 

  78. Al Aboud NM, Jialal I. Genetics, Epigenetic Mechanism. StatPearls Publishing; 2018.

    Google Scholar 

  79. Dayeh T, Tuomi T, Almgren P, et al. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics. 2016. https://doi.org/10.1080/15592294.2016.1178418 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013. https://doi.org/10.1016/j.celrep.2013.03.018 Published online.

    Article  PubMed  Google Scholar 

  81. Huang YT, MacCani JZJ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM. Epigenetic patterns in successful weight loss maintainers: A pilot study. Int J Obes. 2015. https://doi.org/10.1038/ijo.2014.213 Published online.

    Article  Google Scholar 

  82. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation an epigenetic study in diabetes. Diabetes. 2008. https://doi.org/10.2337/db08-0645 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009. https://doi.org/10.2337/db08-1666 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes. 2014. https://doi.org/10.2337/db13-1251 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Zhuo C, Feng M, Andrew DP, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci USA. 2016. https://doi.org/10.1073/pnas.1603712113 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Ross JS, Carlson JA, Brock G. miRNA: The new gene silencer. Am J Clin Pathol. 2007. https://doi.org/10.1309/2JK279BU2G743MWJ Published online.

    Article  PubMed  Google Scholar 

  87. Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019. https://doi.org/10.1016/j.cmet.2019.03.009 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Shah R, Murthy V, Pacold M, et al. Extracellular RNAs are associated with insulin resistance and metabolic phenotypes. Diabetes Care. 2017. https://doi.org/10.2337/dc16-1354 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev. 2011. https://doi.org/10.1002/dmrr.1262 Published online.

    Article  PubMed  Google Scholar 

  90. Yang M, Ye L, Wang B, et al. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J Diabetes. 2015. https://doi.org/10.1111/1753-0407.12163 Published online.

    Article  PubMed  Google Scholar 

  91. Assmann TS, Recamonde-Mendoza M, De Souza BM, Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect. 2017. https://doi.org/10.1530/EC-17-0248 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Dimitriadis G, Mitron P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011. https://doi.org/10.1016/S0168-8227(11)70014-6 Published online.

    Article  PubMed  Google Scholar 

  93. Nair KS, Ford GC, Ekberg K, Fernqvist-Forbes E, Wahren J. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest. 1995. https://doi.org/10.1172/JCI118000 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Chap Z, Ishida T, Chou J, et al. First-pass hepatic extraction and metabolic effects of insulin and insulin analogues. Am J Physiol Endocrinol Metab. 1987. https://doi.org/10.1152/ajpendo.1987.252.2.e209 Published online.

    Article  Google Scholar 

  95. Russell-Jones D, Khan R. Insulin-associated weight gain in diabetes -causes, effects and coping strategies. Diabetes Obes Metab. 2007. https://doi.org/10.1111/j.1463-1326.2006.00686.x Published online.

    Article  PubMed  Google Scholar 

  96. Nathan DM. Influence of intensive diabetes treatment on body weight and composition of adults with type 1 diabetes in the diabetes control and complications trial. Diabetes Care. 2001. https://doi.org/10.2337/diacare.24.10.1711 Published online.

    Article  PubMed  Google Scholar 

  97. Diabetes Control and Complications Trial Research Group. Adverse events and their association with treatment regimens in the diabetes control and complications trial. Diabetes Care. 1995. https://doi.org/10.2337/diacare.18.11.1415 Published online.

    Article  Google Scholar 

  98. Anderson EJ, Richardson M, Castle G, et al. Nutrition interventions for intensive therapy in the Diabetes Control and Complications Trial. The DCCT Research Group. J Am Diet Assoc. 1993 Published online.

  99. Purnell JQ, Hokanson JE, Marcovina SM, Steffes MW, Cleary PA, Brunzell JD. Effect of excessive weight gain with intensive therapy of type 1 diabetes on lipid levels and blood pressure: Results from the DCCT. J Am Med Assoc. 1998. https://doi.org/10.1001/jama.280.2.140 Published online.

    Article  Google Scholar 

  100. Ratzki-Leewing A, Harris SB, Mequanint S, et al. Real-world crude incidence of hypoglycemia in adults with diabetes: results of the InHypo-DM Study. Canada BMJ Open Diabetes Res Care. 2018. https://doi.org/10.1136/bmjdrc-2017-000503 Published online.

    Article  PubMed  Google Scholar 

  101. Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care. 2003. https://doi.org/10.2337/diacare.26.6.1902 Published online.

    Article  PubMed  Google Scholar 

  102. Merwin RM, Moskovich AA, Dmitrieva NO, et al. Disinhibited eating and weight-related insulin mismanagement among individuals with type 1 diabetes. Appetite. 2014. https://doi.org/10.1016/j.appet.2014.05.028 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Wing RR, Cleary PA. Weight gain associated with intensive therapy in the diabetes control and complications trial. Diabetes Care. 1988. https://doi.org/10.2337/diacare.11.7.567 Published online.

    Article  Google Scholar 

  104. Amiel SA, Sherwin RS, Simonson DC, Tamborlane WV. Effect of intensive insulin therapy on glycemic thresholds for counterregulatory hormone release. Diabetes. 1988. https://doi.org/10.2337/diab.37.7.901 Published online.

    Article  PubMed  Google Scholar 

  105. Boyle PJ, Schwartz NS, Shah SD, Clutter WE, Cryer PE. Plasma glucose concentrations at the onset of hypoglycemic symptoms in patients with poorly controlled diabetes and in nondiabetics. N Engl J Med. 1988. https://doi.org/10.1056/nejm198806093182302 Published online.

    Article  PubMed  Google Scholar 

  106. Cryer PE. Preventing hypoglycaemia: what is the appropriate glucose alert value? Diabetologia. 2009. https://doi.org/10.1007/s00125-008-1205-7 Published online.

    Article  PubMed  Google Scholar 

  107. Ratner RE. Hypoglycemia: new definitions and regulatory implications. Diabetes Technol Ther. 2018. https://doi.org/10.1089/dia.2018.0113 Published online.

    Article  PubMed  Google Scholar 

  108. Hayashi T, Wojtaszewski JFP, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab. 1997. https://doi.org/10.1152/ajpendo.1997.273.6.e1039 Published online.

    Article  Google Scholar 

  109. Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia Published online. 2012. https://doi.org/10.1007/s00125-011-2403-2.

    Article  Google Scholar 

  110. Martyn-Nemeth P, Schwarz Farabi S, Mihailescu D, Nemeth J, Quinn L. Fear of hypoglycemia in adults with type 1 diabetes: impact of therapeutic advances and strategies for prevention - a review. J Diabetes Complicat. 2016. https://doi.org/10.1016/j.jdiacomp.2015.09.003 Published online.

    Article  Google Scholar 

  111. Brazeau AS, Rabasa-Lhoret R, Strychar I, Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008. https://doi.org/10.2337/dc08-0720 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009. https://doi.org/10.3748/wjg.15.4137 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care. 1990. https://doi.org/10.2337/diacare.13.6.610 Published online.

    Article  PubMed  Google Scholar 

  114. Yki-Järvinen H, Koivisto VA. Natural course of insulin resistance in type I diabetes. N Engl J Med. 1986. https://doi.org/10.1056/nejm198607243150404 Published online.

    Article  PubMed  Google Scholar 

  115. Madison LL, Unger RH, Kaplan N. The relationship between the mechanism of action of the sulfonylureas and the secretion of insulin into the portal circulation. Ann NY Acad Sci. 1959. https://doi.org/10.1111/j.1749-6632.1959.tb39579.x Published online.

    Article  PubMed  Google Scholar 

  116. Samols E, Ryder JA. Studies on tissue uptake of insulin in man using a differential immunoassay for endogenous and exogenous insulin. J Clin Invest. 1961. https://doi.org/10.1172/JCI104435 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Blackard WG, Nelson NC. Portal and peripheral vein immunoreactive insulin concentrations before and after glucose infusion. Diabetes. 1970. https://doi.org/10.2337/diab.19.5.302 Published online.

    Article  PubMed  Google Scholar 

  118. Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH. Proinsulin, insulin and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975. https://doi.org/10.1172/JCI108047 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia. 1985. https://doi.org/10.1007/BF00279918 Published online.

    Article  PubMed  Google Scholar 

  120. Marangou AG, Weber KM, Boston RC, et al. Metabolic consequences of prolonged hyperinsulinemia in humans. Evidence for induction of insulin insensitivity. Diabetes. 1986. https://doi.org/10.2337/diab.35.12.1383 Published online.

    Article  PubMed  Google Scholar 

  121. Donga E, Dekkers OM, Corssmit EPM, Romijn JA. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol. 2015. https://doi.org/10.1530/EJE-14-0911 Published online.

    Article  PubMed  Google Scholar 

  122. Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism. 2015. https://doi.org/10.1016/j.metabol.2015.09.002 Published online.

    Article  PubMed  Google Scholar 

  123. Schauer IE, Snell-Bergeon JK, Bergman BC, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes the CACTI study. Diabetes. 2011. https://doi.org/10.2337/db10-0328 Published online.

    Article  PubMed  Google Scholar 

  124. Gregory JM, Smith TJ, Slaughter JC, et al. Iatrogenic hyperinsulinemia, not hyperglycemia, drives insulin resistance in type 1 diabetes as revealed by comparison with GCK-MODY (MODY2). Diabetes. 2019. https://doi.org/10.2337/db19-0324 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Van Den Boom L, Karges B, Auzanneau M, et al. Temporal trends and contemporary use of insulin pump therapy and glucose monitoring among children, adolescents, and adults with type 1 diabetes between 1995 and 2017. Diabetes Care. 2019. https://doi.org/10.2337/dc19-0345.

    Article  PubMed  Google Scholar 

  126. Bruttomesso D, Pianta A, Crazzolara D, et al. Continuous subcutaneous insulin infusion (CSII) in the veneto region: efficacy, acceptability and quality of life. Diabet Med. 2002. https://doi.org/10.1046/j.1464-5491.2002.00750.x Published online.

    Article  PubMed  Google Scholar 

  127. Joubert M, Morera J, Vicente A, Rod A, Parienti JJ, Reznik Y. Cross-sectional survey and retrospective analysis of a large cohort of adults with type 1 diabetes with long-Term continuous subcutaneous insulin infusion treatment. J Diabetes Sci Technol. 2014. https://doi.org/10.1177/1932296814537040 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Yeh HC, Brown TT, Maruthur N, et al. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: a systematic review and meta-analysis. Ann Intern Med. 2012. https://doi.org/10.7326/0003-4819-157-5-201209040-00508 Published online.

    Article  PubMed  Google Scholar 

  129. REPOSE Study Group. Relative effectiveness of insulin pump treatment over multiple daily injections and structured education during flexible intensive insulin treatment for type 1 diabetes: cluster randomised trial (REPOSE). BMJ. 2017. https://doi.org/10.1136/bmj.j1285 Published online.

    Article  Google Scholar 

  130. Mehta SN, Andersen HU, Abrahamson MJ, et al. Changes in HbA1c and weight following transition to continuous subcutaneous insulin infusion therapy in adults with type 1 diabetes. J Diabetes Sci Technol. 2017. https://doi.org/10.1177/1932296816658900 Published online.

    Article  PubMed  Google Scholar 

  131. Boucher-Berry C, Parton EA, Alemzadeh R. Excess weight gain during insulin pump therapy is associated with higher basal insulin doses. J Diabetes Metab Disord. 2016. https://doi.org/10.1186/s40200-016-0271-5 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Kruszynska YT, Home PD, Hanning I, Alberti KGMM. Basal and 24-h C-peptide and insulin secretion rate in normal man. Diabetologia. 1987. https://doi.org/10.1007/BF01788901 Published online.

    Article  PubMed  Google Scholar 

  133. Gruberg L, Weissman NJ, Waksman R, et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: The obesity paradox? J Am Coll Cardiol. 2002. https://doi.org/10.1016/S0735-1097(01)01802-2 Published online.

    Article  PubMed  Google Scholar 

  134. Wang L, Liu W, He X, et al. Association of overweight and obesity with patient mortality after acute myocardial infarction: a meta-analysis of prospective studies. Int J Obes. 2016. https://doi.org/10.1038/ijo.2015.176 Published online.

    Article  Google Scholar 

  135. Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol. 2004. https://doi.org/10.1016/j.jacc.2003.11.039 Published online.

    Article  PubMed  Google Scholar 

  136. Karampela I, Chrysanthopoulou E, Christodoulatos GS, Dalamaga M. Is there an obesity paradox in critical illness? Epidemiologic and metabolic considerations. Curr Obes Rep. 2020. https://doi.org/10.1007/s13679-020-00394-x Published online.

    Article  PubMed  Google Scholar 

  137. Karampela I, Christodoulatos GS, Dalamaga M. The role of adipose tissue and adipokines in sepsis: inflammatory and metabolic considerations, and the obesity paradox. Curr Obes Rep. 2019. https://doi.org/10.1007/s13679-019-00360-2 Published online.

    Article  PubMed  Google Scholar 

  138. Casas-Vara A, Santolaria F, Fernández-Bereciartúa A, González-Reimers E, García-Ochoa A, Martínez-Riera A. The obesity paradox in elderly patients with heart failure: analysis of nutritional status. Nutrition. 2012. https://doi.org/10.1016/j.nut.2011.10.006 Published online.

    Article  PubMed  Google Scholar 

  139. Curtis JP, Selter JG, Wang Y, et al. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005. https://doi.org/10.1001/archinte.165.1.55 Published online.

    Article  PubMed  Google Scholar 

  140. Graziani F, Biasucci LM, Cialdella P, et al. Thromboxane production in morbidly obese subjects. Am J Cardiol. 2011. https://doi.org/10.1016/j.amjcard.2011.01.053 Published online.

    Article  PubMed  Google Scholar 

  141. Khatib M, Simkhada P, Gode D. Cardioprotective effects of ghrelin in heart failure: from gut to heart. Hear Views. 2014. https://doi.org/10.4103/1995-705x.144792 Published online.

    Article  Google Scholar 

  142. Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. J Endocrinol. 2013. https://doi.org/10.1530/JOE-12-0232 Published online.

    Article  PubMed  Google Scholar 

  143. Robinson WR, Furberg H, Banack HR. Selection bias: A missing factor in the obesity paradox debate. Obesity. 2014. https://doi.org/10.1002/oby.20666 Published online.

    Article  PubMed  Google Scholar 

  144. Preston SH, Stokes A. Obesity paradox: Conditioning on disease enhances biases in estimating the mortality risks of obesity. Epidemiology. 2014. https://doi.org/10.1097/EDE.0000000000000075 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Nuttall FQ. Body mass index: Obesity, BMI, and health: a critical review. Nutr Today. 2015. https://doi.org/10.1097/NT.0000000000000092 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Roy M, Rendas-Baum R, Skurnick J. Mortality in African-Americans with Type 1 diabetes: The New Jersey 725. Diabet Med. 2006. https://doi.org/10.1111/j.1464-5491.2006.01901.x Published online.

    Article  PubMed  Google Scholar 

  147. Conway B, Miller RG, Costacou T, et al. Adiposity and mortality in type 1 diabetes. Int J Obes. 2009. https://doi.org/10.1038/ijo.2009.75 Published online.

    Article  Google Scholar 

  148. Purnell JQ, Braffett BH, Zinman B, et al. Impact of excessive weight gain on cardiovascular outcomes in type 1 diabetes: results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Care. 2017. https://doi.org/10.2337/dc16-2523 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Niraj A, Pradahan J, Fakhry H, Veeranna V, Afonso L. Severity of coronary artery disease in obese patients undergoing coronary angiography: “Obesity Paradox” revisited. Clin Cardiol. 2007. https://doi.org/10.1002/clc.20113 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Rubinshtein R, Halon DA, Jaffe R, Shahla J, Lewis BS. Relation between obesity and severity of coronary artery disease in patients undergoing coronary angiography. Am J Cardiol. 2006. https://doi.org/10.1016/j.amjcard.2005.11.061 Published online.

    Article  PubMed  Google Scholar 

  151. Vestberg D, Rosengren A, Eeg-Olofsson K, et al. Body mass index as a risk factor for coronary events and mortality in patients with type 1 diabetes. Open Hear. 2018. https://doi.org/10.1136/openhrt-2017-000727 Published online.

    Article  Google Scholar 

  152. Edqvist J, Rawshani A, Adiels M, et al. BMI, mortality, and cardiovascular outcomes in type 1 diabetes: findings against an obesity paradox. Diabetes Care. 2019. https://doi.org/10.2337/dc18-1446 Published online.

    Article  PubMed  Google Scholar 

  153. Dahlström EH, Sandholm N, Forsblom CM, et al. Body mass index and mortality in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2019-00042 Published online.

    Article  PubMed  Google Scholar 

  154. Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020. https://doi.org/10.1038/s41574-019-0310-7 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  155. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 05 could be a suitable global boundary value. Nutr Res Rev. 2010. https://doi.org/10.1017/S0954422410000144 Published online.

    Article  PubMed  Google Scholar 

  156. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012. https://doi.org/10.1111/j.1467-789X.2011.00952.x Published online.

    Article  PubMed  Google Scholar 

  157. De Block CEM, De Leeuw IH, Van Gaal LF. Impact of overweight on chronic microvascular complications in type 1 diabetic patients. Diabetes Care. 2005. https://doi.org/10.2337/diacare.28.7.1649 Published online.

    Article  PubMed  Google Scholar 

  158. • Tesfaye S, Chaturvedi N, Eaton SEM, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005. https://doi.org/10.1056/nejmoa032782 Published online. This large prospective study of 1172 patients with T1D showed that baseline BMI, a potentially modifiable factor, was an independent predictor for the development of neuropathy.

    Article  PubMed  Google Scholar 

  159. Bartlett JG. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults. Infect Dis Clin Pract. 2001. https://doi.org/10.1097/00019048-200106000-00021 Published online.

    Article  Google Scholar 

  160. Thorn LM, Forsblom C, Fagerudd J, et al. Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care. 2005. https://doi.org/10.2337/diacare.28.8.2019 Published online.

    Article  PubMed  Google Scholar 

  161. Merger SR, Kerner W, Stadler M, et al. Prevalence and comorbidities of double diabetes. Diabetes Res Clin Pract. 2016. https://doi.org/10.1016/j.diabres.2016.06.003 Published online.

    Article  PubMed  Google Scholar 

  162. Chillarón JJ, Goday A, Flores-Le-Roux JA, et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J Clin Endocrinol Metab. 2009. https://doi.org/10.1210/jc.2009-0960 Published online.

    Article  PubMed  Google Scholar 

  163. Girgis CM, Scalley BD, Park KEJ. Utility of the estimated glucose disposal rate as a marker of microvascular complications in young adults with type 1 diabetes. Diabetes Res Clin Pract. 2012. https://doi.org/10.1016/j.diabres.2012.02.004 Published online.

    Article  PubMed  Google Scholar 

  164. Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G. Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet. 1993. https://doi.org/10.1016/0140-6736(93)91943-G Published online.

    Article  PubMed  Google Scholar 

  165. Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE. Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int. 2002. https://doi.org/10.1046/j.1523-1755.2002.00507.x Published online.

    Article  PubMed  Google Scholar 

  166. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome - a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006. https://doi.org/10.1111/j.1464-5491.2006.01858.x Published online.

    Article  PubMed  Google Scholar 

  167. Gregory JM, Cherrington AD, Moore DJ. The peripheral peril: Injected insulin induces insulin insensitivity in type 1 diabetes. Diabetes. 2020. https://doi.org/10.2337/dbi19-0026 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  168. Olson JC, Erbey JR, Forrest KYZ, Williams K, Becker DJ, Orchard TJ. Glycemia (or, in women, estimated glucose disposal rate) predict lower extremity arterial disease events in type 1 diabetes. Metabolism. 2002. https://doi.org/10.1053/meta.2002.30021 Published online.

    Article  PubMed  Google Scholar 

  169. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome. Circulation. 2005. https://doi.org/10.1161/circulationaha.105.169404 Published online.

    Article  PubMed  Google Scholar 

  170. Reindel J, Zander E, Heinke P, Kohnert K-D, Allwardt C, Kerner W. Metabolisches Syndrom bei Patienten mit Diabetes mellitus Typ 1. The metabolic syndrome in patients with type 1 diabetes mellitus. Associations with cardiovascular risk factors and cardiovascular morbidity. Herz. 2004. https://doi.org/10.1007/s00059-004-2606-0 Published online.

    Article  PubMed  Google Scholar 

  171. Price SA, Gorelik A, Fourlanos S, Colman PG, Wentworth JM. Obesity is associated with retinopathy and macrovascular disease in type 1 diabetes. Obes Res Clin Pract. 2014. https://doi.org/10.1016/j.orcp.2013.03.007 Published online.

    Article  PubMed  Google Scholar 

  172. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990. https://doi.org/10.1016/0735-1097(90)90282-T Published online.

    Article  PubMed  Google Scholar 

  173. Olson JC, Edmundowicz D, Becker DJ, Kuller LH, Orchard TJ. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes. 2000. https://doi.org/10.2337/diabetes.49.9.1571 Published online.

    Article  PubMed  Google Scholar 

  174. Dabelea D, Kinney G, Snell-Bergeon JK, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance?: The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003. https://doi.org/10.2337/diabetes.52.11.2833 Published online.

    Article  PubMed  Google Scholar 

  175. Rodrigues TC, Biavatti K, Almeida FK, Gross JL. Coronary artery calcification is associated with insulin resistance index in patients with type 1 diabetes. Brazilian J Med Biol Res. 2010. https://doi.org/10.1590/S0100-879X2010007500109 Published online.

    Article  Google Scholar 

  176. Cleary PA, Orchard TJ, Genuth S, et al. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2006. https://doi.org/10.2337/db06-0653 Published online.

    Article  PubMed  Google Scholar 

  177. Wang Y, Osborne MT, Tung B, Li M, Li Y. Imaging cardiovascular calcification. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.118.008564 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  178. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999. https://doi.org/10.1056/nejm199901073400103 Published online.

    Article  PubMed  Google Scholar 

  179. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam Study. Circulation. 1997. https://doi.org/10.1161/01.CIR.96.5.1432 Published online.

    Article  PubMed  Google Scholar 

  180. Yamasaki Y, Kawamori R, Matsushima H, et al. Atherosclerosis in carotid artery of young IDDM patients monitored by ultrasound high-resolution B-mode imaging. Diabetes. 1994. https://doi.org/10.2337/diab.43.5.634 Published online.

    Article  PubMed  Google Scholar 

  181. Margeirsdottir HD, Stensaeth KH, Larsen JR, Brunborg C, Dahl-Jørgensen K. Early signs of atherosclerosis in diabetic children on intensive insulin treatment: a population-based study. Diabetes Care. 2010. https://doi.org/10.2337/dc10-0505 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  182. Larsen JR, Brekke M, Bergengen L, et al. Mean HbA1c over 18 years predicts carotid intima media thickness in women with type 1 diabetes. Diabetologia. 2005. https://doi.org/10.1007/s00125-005-1700-z Published online.

    Article  PubMed  Google Scholar 

  183. Ogawa Y, Uchigata Y, Iwamoto Y. Progression factors of carotid intima-media thickness and plaque in patients with long-term, early-onset type 1 diabetes mellitus in Japan: simultaneous comparison with diabetic retinopathy. J Atheroscler Thromb. 2009. https://doi.org/10.5551/jat.1701 Published online.

    Article  PubMed  Google Scholar 

  184. Purnell JQ, John EH, Cleary PA, et al. The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interven. Circulation. 2013. https://doi.org/10.1161/CIRCULATIONAHA.111.077487 Published online.

    Article  PubMed  Google Scholar 

  185. Dalla Pozza R, Beyerlein A, Thilmany C, et al. The effect of cardiovascular risk factors on the longitudinal evolution of the carotid intima medial thickness in children with type 1 diabetes mellitus. Cardiovasc Diabetol. 2011. https://doi.org/10.1186/1475-2840-10-53 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  186. Shah AS, Dabelea D, Fino NF, et al. Predictors of increased carotid intima-media thickness in youth with type 1 diabetes: The SEARCH CVD study. Diabetes Care. 2016. https://doi.org/10.2337/dc15-1963 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  187. McAllister DA, Read SH, Kerssens J, et al. Incidence of hospitalization for heart failure and case-fatality among 3.25 million people with and without diabetes mellitus. Circulation. 2018. https://doi.org/10.1161/CIRCULATIONAHA.118.034986 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  188. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972. https://doi.org/10.1016/0002-9149(72)90595-4 Published online.

    Article  PubMed  Google Scholar 

  189. Acar G, Akcay A, Sokmen A, et al. Assessment of atrial electromechanical delay, diastolic functions, and left atrial mechanical functions in patients with type 1 diabetes mellitus. J Am Soc Echocardiogr. 2009. https://doi.org/10.1016/j.echo.2009.03.028 Published online.

    Article  PubMed  Google Scholar 

  190. Jȩdrzejewska I, Król W, Światowiec A, et al. Left and right ventricular systolic function impairment in type 1 diabetic young adults assessed by 2D speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2016. https://doi.org/10.1093/ehjci/jev164 Published online.

    Article  PubMed  Google Scholar 

  191. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001. https://doi.org/10.1097/00000441-200104000-00003.

    Article  PubMed  Google Scholar 

  192. Savji N, Meijers WC, Bartz TM, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Hear Fail. 2018. https://doi.org/10.1016/j.jchf.2018.05.018 Published online.

    Article  Google Scholar 

  193. Clark K. Obesity and the risk of heart failure. J Insur Med. 2003. https://doi.org/10.1056/nejmoa020245 Published online.

    Article  PubMed  Google Scholar 

  194. Lind M, Bounias I, Olsson M, Gudbjörnsdottir S, Svensson AM, Rosengren A. Glycaemic control and incidence of heart failure in 20 985 patients with type 1 diabetes: An observational study. Lancet. 2011. https://doi.org/10.1016/S0140-6736(11)60471-6 Published online.

    Article  PubMed  Google Scholar 

  195. Vestberg D, Rosengren A, Olsson M, Gudbjörnsdottir S, Svensson AM, Lind M. Relationship between overweight and obesity with hospitalization for heart failure in 20,985 patients with type 1 diabetes: a population-based study from the Swedish National Diabetes Registry. Diabetes Care. 2013. https://doi.org/10.2337/dc12-2007 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  196. • Nadeau KJ, Regensteiner JG, Bauer TA, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010. https://doi.org/10.1210/jc.2009-1756 Published online. This cross-sectional study has shown that youth with T1D demonstrated higher IR and worse exercise capacity compared to age-matched people without diabetes.

    Article  PubMed  Google Scholar 

  197. Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010. https://doi.org/10.1007/s00125-009-1636-9 Published online.

    Article  PubMed  Google Scholar 

  198. Pang TTL, Narendran P. Addressing insulin resistance in type 1 diabetes. Diabet Med. 2008. https://doi.org/10.1111/j.1464-5491.2008.02493.x Published online.

    Article  PubMed  Google Scholar 

  199. Abdelghaffar S, Attia AM. Metformin added to insulin therapy for type 1 diabetes mellitus in adolescents. Cochrane Database Syst Rev. 2009. https://doi.org/10.1002/14651858.CD006691.pub2 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  200. Liu C, Wu D, Zheng X, Li P, Li L. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes Technol Ther. 2015. https://doi.org/10.1089/dia.2014.0190 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  201. Petrie JR, Chaturvedi N, Ford I, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017. https://doi.org/10.1016/S2213-8587(17)30194-8 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  202. Scherbaum WA. The role of amylin in the physiology of glycemic control. Exp Clin Endocrinol Diabetes. 1998. https://doi.org/10.1055/s-0029-1211958 Published online.

    Article  PubMed  Google Scholar 

  203. Hoogwerf BJ, Doshi KB, Diab D. Pramlintide, the synthetic analogue of amylin: Physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc Health Risk Manag. 2008. https://doi.org/10.2147/vhrm.s1978 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  204. Cooper GJS, Leighton B, Dimitriadis GD, et al. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc Natl Acad Sci USA. 1988. https://doi.org/10.1073/pnas.85.20.7763 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  205. Young AA, Cooper GJS, Carlo P, Rink TJ, Wang MW. Response to intravenous injections of amylin and glucagon in fasted, fed, and hypoglycemic rats. Am J Physiol Endocrinol Metab. 1993. https://doi.org/10.1152/ajpendo.1993.264.6.e943 Published online.

    Article  Google Scholar 

  206. Schmitz O, Nyholm B, Orskov L, Gravholt C, Møller N. Effects of amylin and the amylin agonist pramlintide on glucose metabolism. Diabet Med. 1997 Jun; 14 Suppl 2:S19–23. Retrieved from https://onlinelibrary.wiley.com/toc/10969136/14/S2.

  207. Younk LM, Mikeladze M, Davis SN. Pramlintide and the treatment of diabetes: a review of the data since its introduction. Expert Opin Pharmacother. 2011. https://doi.org/10.1517/14656566.2011.581663 Published online.

    Article  PubMed  Google Scholar 

  208. Lee NJ, Norris SL, Thakurta S. Efficacy and harms of the hypoglycemic agent pramlintide in diabetes mellitus. Ann Fam Med. 2010. https://doi.org/10.1370/afm.1174 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  209. Brown E, Rajeev SP, Cuthbertson DJ, Wilding JPH. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab. 2019. https://doi.org/10.1111/dom.13650 Published online.

    Article  PubMed  Google Scholar 

  210. Rangaswami J, Bhalla V, De Boer IH, et al. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association. Circulation. 2020. https://doi.org/10.1161/CIR.0000000000000920 Published online.

    Article  PubMed  Google Scholar 

  211. El Masri D, Ghosh S, Jaber LA. Safety and efficacy of sodium-glucose cotransporter 2 (SGLT2) inhibitors in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018. https://doi.org/10.1016/j.diabres.2018.01.004 Published online.

    Article  PubMed  Google Scholar 

  212. Yaribeygi H, Sathyapalan T, Maleki M, Jamialahmadi T, Sahebkar A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: a mechanistic review. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2019.117090 Published online.

    Article  PubMed  Google Scholar 

  213. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012. https://doi.org/10.1038/nrendo.2012.140 Published online.

    Article  PubMed  Google Scholar 

  214. Sfairopoulos D, Liatis S, Tigas S, Liberopoulos E. Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Hormones. 2018. https://doi.org/10.1007/s42000-018-0038-0 Published online.

    Article  PubMed  Google Scholar 

  215. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. Drug Ther Bull. 2016. https://doi.org/10.1056/nejmoa1603827 Published online.

    Article  Google Scholar 

  216. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019. https://doi.org/10.1016/S0140-6736(19)31149-3 Published online.

  217. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016. https://doi.org/10.1056/nejmoa1607141 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  218. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: Systematic review and meta-analyses of randomised controlled trials. BMJ. 2012. https://doi.org/10.1136/bmj.d7771 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  219. Sarkar G, Alattar M, Brown RJ, Quon MJ, Harlan DM, Rother KI. Exenatide treatment for 6 months improves insulin sensitivity in adults with type 1 diabetes. Diabetes Care. 2014. https://doi.org/10.2337/dc13-1473 Published online.

    Article  PubMed Central  PubMed  Google Scholar 

  220. Johansen NJ, Dejgaard TF, Lund A, et al. Efficacy and safety of meal-time administration of short-acting exenatide for glycaemic control in type 1 diabetes (MAG1C): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2020. https://doi.org/10.1016/S2213-8587(20)30030-9 Published online.

    Article  PubMed  Google Scholar 

  221. Dejgaard TF, Frandsen CS, Hansen TS, et al. Efficacy and safety of liraglutide for overweight adult patients with type 1 diabetes and insufficient glycaemic control (Lira-1): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2016. https://doi.org/10.1016/S2213-8587(15)00436-2 Published online.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Karamanakos.

Ethics declarations

Conflict of Interest

Georgios Karamanakos, Maria Dalamaga declare that they have no conflict of interest. Alexander Kokkinos: Served on advisory boards, received travel grants, or research support from Eli Lilly, Sanofi, Novo Nordisk, MSD, Astra Zeneca, ELPEN Pharma, Boehringer-Ingelheim, Bausch Health, Ethicon, Galenica, and Epsilon Health. Stavros Liatis: I have received research support and/or consulting or speaker honoraria from Astra-Zeneca, Boehringer-Ingelheim, MSD, Novartis, Novo Nordisk, Sanofi, Eli Lilly, and ELPEN, during the last three years.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on The Obesity Epidemic: Causes and Consequences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamanakos, G., Kokkinos, A., Dalamaga, M. et al. Highlighting the Role of Obesity and Insulin Resistance in Type 1 Diabetes and Its Associated Cardiometabolic Complications. Curr Obes Rep 11, 180–202 (2022). https://doi.org/10.1007/s13679-022-00477-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-022-00477-x

Keywords

Navigation