Skip to main content

Advertisement

Log in

Adaptive Thermogenesis in Resistance to Obesity Therapies: Issues in Quantifying Thrifty Energy Expenditure Phenotypes in Humans

  • Obesity Treatment (CM Apovian, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Dieting and exercise are likely to remain the core approaches in the management of obesity in the foreseeable future despite their well-documented failures for achieving long-term weight loss. Explanations for such poor prognosis are centered on patient’s self-regulatory failure and lack of compliance to the prescribed diet or exercise regimen. While a role for physiological adaptations leading to diminished rates of heat production has also been advocated, there are considerable uncertainties about the quantitative importance of such regulated heat production (i.e., adaptive thermogenesis) to the less-than-expected weight loss and ease for weight regain. This paper first reviews the most compelling evidence of what is often considered as weight loss-induced adaptive thermogenesis in various compartments of daily energy expenditure. It then discusses the major limitations and issues in quantifying such thrifty energy expenditure phenotypes and underscores the plausibility of diminished core temperature as a thrifty metabolic trait in resistance to weight loss. Although an accurate quantification of adaptive thermogenesis will have to await the applications of deep body composition phenotyping and better discrimination of physical activity energy expenditures, the magnitude of diminished energy expenditure in response to weight loss in certain individuals is large enough to support the concept that adaptive thermogenesis contribute importantly to their resistance to obesity therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stunkard AJ. The management of obesity. N Y State J Med. 1958;58:79–87.

    Google Scholar 

  2. Dulloo AG, Montani JP. Pathways from dieting to weight regain, to obesity and to the metabolic syndrome: an overview. Obes Rev. 2015;16 Suppl 1:1–6.

    Article  PubMed  Google Scholar 

  3. Montani JP, Schutz Y, Dulloo AG. Dieting and weight cycling as risk factors for cardiometabolic diseases: who is really at risk? Obes Rev. 2015;16 Suppl 1:7–18.

    Article  PubMed  Google Scholar 

  4. Dulloo AG, Jacquet J, Montani JP, et al. How dieting makes the lean fatter: from a perspective of body composition autoregulation through adipostats and proteinstats awaiting discovery. Obes Rev. 2015;16 Suppl 1:25–35.

    Article  PubMed  Google Scholar 

  5. Bosy-Westphal A, Kahlhöfer J, Lagerpusch M, Skurk T, Müller MJ. Deep body composition phenotyping during weight cycling: relevance to metabolic efficiency and metabolic risk. Obes Rev. 2015;16 Suppl 1:36–44.

    Article  PubMed  Google Scholar 

  6. Atkinson RL. Current status of the field of obesity. Trends Endocrinol Metab. 2014;25:283–4.

    Article  CAS  PubMed  Google Scholar 

  7. Weiss EC, Galuska DA, Kettel Khan L, et al. Weight regain in U.S. adults who experienced substantial weight loss, 1999–2002. Am J Prev Med. 2007;33:34–40.

    Article  PubMed  Google Scholar 

  8. Mann T, Tomiyama AJ, Westling E, et al. Medicare’s search for effective obesity treatments: diets are not the answer. Am Psychol. 2007;62:220–33.

    Article  PubMed  Google Scholar 

  9. Loveman E, Frampton GK, Shepherd J, et al. The clinical effectiveness and cost-effectiveness of long-term weight management schemes for adults: a systematic review. Health Technol Assess. 2011;15:1–182.

    Article  CAS  Google Scholar 

  10. Elfhag K, Rossner S. Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev. 2005;6:67–85.

    Article  CAS  PubMed  Google Scholar 

  11. Dulloo AG. Explaining the failures of obesity therapy: willpower attenuation, target miscalculation or metabolic compensation? Int J Obes. 2012;36:1418–20.

    Article  CAS  Google Scholar 

  12. Maclean PS, Bergouignan A, Cornier MA, et al. Biology’s response to dieting: the impetus for weight regain. Am J Physiol. 2011;301:R581–600.

    CAS  Google Scholar 

  13. MacLean PS, Higgins JA, Giles ED, Sherk VD, Jackman MR. The role for adipose tissue in weight regain after weight loss. Obes Rev. 2015;16 Suppl 1:45–54.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Blundell JE, Gibbons C, Caudwell P, et al. Appetite control and energy balance: impact of exercise. Obes Rev. 2015;16 Suppl 1:67–76.

    Article  PubMed  Google Scholar 

  15. Berthoud HR. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011;21:888–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kouvelioti R, Vagenas G, Langley-Evans S. The effects of exercise and diet on weight loss maintenance in overweight and obese adults: a systematic review. J Sports Med Phys Fitness. 2014;54:456–74.

    CAS  PubMed  Google Scholar 

  17. Heymsfield SB, Harp JB, Reitman ML, et al. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am J Clin Nutr. 2007;85:346–54.

    CAS  PubMed  Google Scholar 

  18. Byrne NM, Wood RE, Schutz Y, et al. Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int J Obes. 2012;36:1472–8.

    Article  CAS  Google Scholar 

  19. Goele K, Bosy-Westphal A, Rumcker B, et al. Influence of changes in body composition and adaptive thermogenesis on the difference between measured and predicted weight loss in obese women. Obes Facts. 2009;2:105–9.

  20. Hainer V, Stunkard AJ, Kunesova M, et al. A twin study of weight loss and metabolic efficiency. Int J Obes. 2001;25:533–7.

    Article  CAS  Google Scholar 

  21. Dulloo AG, Jacquet J, Seydoux J, et al. The thrifty ‘catch-up fat’ phenotype: its impact on insulin sensitivity during growth trajectories to obesity and metabolic syndrome. Int J Obes. 2006;30 Suppl 4:S23–35.

    Article  CAS  Google Scholar 

  22. Simmons R. Perinatal programming of obesity. Semin Perinatol. 2008;32:371–4.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Péneau S, Thibault H, Meless D, et al. Anthropometric and behavioral patterns associated with weight maintenance after an obesity treatment in adolescents. J Pediatr. 2008;152:678–84.

    Article  PubMed  Google Scholar 

  24. Ortega FB, Ruiz JR, Alkorta MP, et al. The effect of birth weight on low-energy diet-induced changes in body composition and substrate-energy metabolism in obese women. J Am Coll Nutr. 2011;30:134–40.

    Article  PubMed  Google Scholar 

  25. Miller DS, Parsonage S. Resistance to slimming: adaptation or illusion? Lancet. 1975;1(7910):773–5.

    Article  CAS  PubMed  Google Scholar 

  26. Dulloo AG. Strategies to counteract readjustments toward lower metabolic rates during obesity management. Nutrition. 1993;9:366–72.

    CAS  PubMed  Google Scholar 

  27. Webster JD, Hesp R, Garrow JS. The composition of excess weight in obese women estimated by body density, total body water and total body potassium. Hum Nutr Clin Nutr. 1984;38:299–306.

    CAS  PubMed  Google Scholar 

  28. Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes. 2007;31:743–50.

    CAS  Google Scholar 

  29. Jéquier E, Schutz Y. Long-term measurements of energy expenditure in humans using a respiration chamber. Am J Clin Nutr. 1983;38:989–98.

    PubMed  Google Scholar 

  30. Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes. 2007;31:743–50.

    CAS  Google Scholar 

  31. Froidevaux F, Schutz Y, Christin L, et al. Energy expenditure in obese women before and during weight loss, after refeeding, and in the weight-relapse period. Am J Clin Nutr. 1993;57:35–42.

    CAS  PubMed  Google Scholar 

  32. Dulloo AG. Translational issues in targeting brown adipose tissue thermogenesis for human obesity management. Ann N Y Acad Sci. 2013;1302:1–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88:906–12.

    CAS  PubMed  Google Scholar 

  35. Camps SG, Verhoef SP, Westerterp KR. Weight loss, weight maintenance, and adaptive thermogenesis. Am J Clin Nutr. 2013;97:990–4.

    Article  CAS  PubMed  Google Scholar 

  36. Luke A, Schoeller DA. Basal metabolic rate, fat-free mass, and body cell mass during energy restriction. Metabolism. 1992;41:450–6.

    Article  CAS  PubMed  Google Scholar 

  37. Dulloo AG, Jacquet J. Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores. Am J Clin Nutr. 1998;68:599–606.

    CAS  PubMed  Google Scholar 

  38. Major GC, Doucet E, Trayhurn P, et al. Clinical significance of adaptive thermogenesis. Int J Obes. 2007;31:204–12.

    Article  CAS  Google Scholar 

  39. Martin CK, Heilbronn LK, de Jonge L, et al. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity (Silver Spring). 2007;15:2964–73.

    Article  Google Scholar 

  40. Tremblay A, Royer MM, Chaput JP, et al. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int J Obes. 2013;37:759–64.

    Article  CAS  Google Scholar 

  41. Lazzer S, Boirie Y, Montaurier C, et al. A weight reduction program preserves fat-free mass but not metabolic rate in obese adolescents. Obes Res. 2004;12:233–40.

    Article  PubMed  Google Scholar 

  42. Hopkins M, Gibbons C, Caudwell P, et al. The adaptive metabolic response to exercise-induced weight loss influences both energy expenditure and energy intake. Eur J Clin Nutr. 2014;68:581–6.

    Article  CAS  PubMed  Google Scholar 

  43. Johannsen DL, Knuth ND, Huizenga R, et al. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97:2489–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Dulloo AG, Miller DS. The thermogenic properties of ephedrine/methylxanthine mixtures: human studies. Int J Obes. 1986;10:467–81.

    CAS  PubMed  Google Scholar 

  45. Dulloo AG, Geissler CA, Horton T, et al. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr. 1989;49:44–50.

    CAS  PubMed  Google Scholar 

  46. Astrup A, Andersen T, Christensen NJ, et al. Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans. Am J Clin Nutr. 1990;51:331–7.

    CAS  PubMed  Google Scholar 

  47. Nelson KM, Weinsier RL, James LD, et al. Effect of weight reduction on resting energy expenditure, substrate utilization, and the thermic effect of food in moderately obese women. Am J Clin Nutr. 1992;55:924–33.

    CAS  PubMed  Google Scholar 

  48. Weigle BS, Brunzell J. Assessment of energy expenditure in ambulatory reduced-obese subjects by techniques of weight stabilization and exogenous weight replacement. Int J Obes. 1990;14:69–77.

    PubMed  Google Scholar 

  49. Doucet E, Imbeault P, St-Pierre S, et al. Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci (Lond). 2003;105:89–95.

    Article  Google Scholar 

  50. Manore MM, Berry TE, Skinner JS, et al. Energy expenditure at rest and during exercise in nonobese female cyclical dieters and in nondieting control subjects. Am J Clin Nutr. 1991;54:41–6.

    CAS  PubMed  Google Scholar 

  51. Rosenbaum M, Vandenborne K, Goldsmith R, et al. Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol. 2003;285:R183–92.

    Article  CAS  Google Scholar 

  52. Dulloo AG, Jacquet J, Montani JP, et al. Adaptive thermogenesis in human body weight regulation: more of a concept than a measurable entity? Obes Rev. 2012;13 Suppl 2:105–21.

    Article  PubMed  Google Scholar 

  53. Ravussin E, Lillioja S, Anderson TE, et al. Determinants of 24-hour energy expenditure in man: methods and results using a respiratory chamber. J Clin Invest. 1986;78:1568–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zurlo F, Ferraro RT, Fontvielle AM, et al. Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians. Am J Physiol. 1992;263(2 Pt 1):E296–300.

    CAS  PubMed  Google Scholar 

  55. Weyer C, Walford RL, Harper IT, et al. Energy metabolism after 2 y of energy restriction : the Biosphere 2 experiment. Am J Clin Nutr. 2000;72:946–53.

    CAS  PubMed  Google Scholar 

  56. Leone PA, Gallagher D, Wang J, et al. Relative overhydration of fat-free mass in postobese versus never-obese subjects. Ann N Y Acad Sci. 2000;904:514–9.

    Article  CAS  PubMed  Google Scholar 

  57. Elia M. Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN, editors. Energy metabolism: tissue determinants and cellular corollaries. New York: Raven; 1992. p. 61–77.

    Google Scholar 

  58. Müller MJ, Bosy-Westphal A, Kutzner D, et al. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev. 2002;3:113–22.

    Article  PubMed  Google Scholar 

  59. Heymsfield S, Thomas D, Bosy-Westphal A, et al. Evolving concepts on adjusting human resting energy expenditure measurements for body size. Obes Rev. 2012;13:1001–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Dulloo AG, Jacquet J, Solinas G, et al. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34 Suppl 2:S4–17.

    Article  Google Scholar 

  61. Bosy-Westphal A, Kossel E, Goele K, et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr. 2009;90:993–1001.

    Article  CAS  PubMed  Google Scholar 

  62. Bosy-Westphal A, Schautz B, Lagerpusch M, et al. Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int J Obes. 2013;37:1371–7.

    Article  CAS  Google Scholar 

  63. Dulloo AG, Jacquet J, Girardier L. Autoregulation of body composition during weight recovery in humans: the Minnesota Experiment revisited. Int J Obes. 1996;20:393–405.

    CAS  Google Scholar 

  64. Cunningham JJ. Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr. 1991;54:963–9.

    CAS  PubMed  Google Scholar 

  65. Nelson KM, Weinsier RL, Long CL, et al. Prediction of resting energy expenditure from fat-free mass and fat mass. Am J Clin Nutr. 1992;56:848–56.

    CAS  PubMed  Google Scholar 

  66. Bosy-Westphal A, Müller MJ, Boschmann M, et al. Grade of adiposity affects the impact of fat mass on resting energy expenditure in women. Br J Nutr. 2009;101:474–7.

    Article  CAS  PubMed  Google Scholar 

  67. Bosy-Westphal A, Braun W, Schautz B, et al. Issues in characterizing resting energy expenditure in obesity and after weight loss. Front Physiol. 2013;4:47. doi:10.3389/fphys.2013.00047. eCollection 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Brozek J, Grande F. Body composition and basal metabolism in man: correlation analysis versus physiological approach. Hum Biol. 1955;27:22–31.

    CAS  PubMed  Google Scholar 

  69. Westerterp KR. Physical activity, food intake, and body weight regulation: insights from doubly labeled water studies. Nutr Rev. 2010;68:148–54.

    Article  PubMed  Google Scholar 

  70. Martin CK, Das SK, Lindblad L, et al. CALERIE Study Team. Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials. J Appl Physiol. 2011;110:956–63.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Camps SG, Verhoef SP, Westerterp KR. Weight loss-induced reduction in physical activity recovers during weight maintenance. Am J Clin Nutr. 2013;98:917–23.

    Article  CAS  PubMed  Google Scholar 

  72. Johannsen DL, Ravussin E. Spontaneous physical activity: relationship between fidgeting and body weight control. Curr Opin Endocrinol Diabetes Obes. 2008;15:409–15.

    Article  PubMed  Google Scholar 

  73. Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care. 2004;7:599–605.

    Article  PubMed  Google Scholar 

  74. Garland Jr T, Schutz H, Chappell MA, et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol. 2011;214(Pt 2):206–29.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Reger M, Peterman JE, Kram R, et al. Exercise efficiency of low power output cycling. Scand J Med Sci Sports. 2013;23:713–21.

    Article  CAS  PubMed  Google Scholar 

  76. Sarafian D, Miles-Chan JL, Yepuri G, et al. A standardized approach to study human variability in isometric thermogenesis during low-intensity physical activity. Front Physiol. 2013;4:155. doi:10.3389/fphys.2013.00155. eCollection 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Landsberg L. Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev. 2012;13 Suppl 2:97–104.

    Article  PubMed  Google Scholar 

  78. Dubois EF. The basal metabolism in fever. JAMA. 1921;77:352–5.

    Article  CAS  Google Scholar 

  79. Heikens MJ, Gorbach AM, Eden HS, et al. Core body temperature in obesity. Am J Clin Nutr. 2011;93:963–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Hoffmann ME, Rodriguez SM, Zeiss DM, et al. 24-h core temperature in obese and lean men and women. Obesity (Silver Spring). 2012;20:1585–90.

    Article  Google Scholar 

  81. Keys A, Brozek J, Henschel A, et al. The biology of human starvation. Minneapolis University of Minnesota Press 1950.

  82. Rising R, Fontvieille AM, Larson DE, et al. Racial difference in body core temperature between Pima Indian and Caucasian men. Int J Obes. 1995;19:1–5.

    CAS  Google Scholar 

  83. Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol. 2004;66:239–74.

    Article  CAS  PubMed  Google Scholar 

  84. Hammel HT, Elsner RW, Le Messurier DH, et al. Thermal and metabolic responses of the Australian aborigine exposed to moderate cold in summer. J Appl Physiol. 1959;14:605–15.

    Google Scholar 

  85. Willershäuser M, Ehrhardt N, Elvert R, et al. Systematic screening for mutant mouse lines with defects in body temperature regulation. In Living in a Seasonal World, 2012. pp 459–469.

  86. Weinsier RL, Bracco D, Schutz Y. Predicted effects of small decreases in energy expenditure on weight gain in adult women. Int J Obes. 1993;17:693–700.

    CAS  Google Scholar 

  87. Schutz Y, Byrne NM, Dulloo A, et al. Energy gap in the aetiology of body weight gain and obesity: a challenging concept with a complex evaluation and pitfalls. Obes Facts. 2014;7:15–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is in part supported by a grant from Swiss National Science Foundation (Grant no. 31-0030-152870).

Compliance with Ethics Guidelines

Conflict of Interest

Abdul G. Dulloo and Yves Schutz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul G. Dulloo.

Additional information

This article is part of the Topical Collection on Obesity Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulloo, A.G., Schutz, Y. Adaptive Thermogenesis in Resistance to Obesity Therapies: Issues in Quantifying Thrifty Energy Expenditure Phenotypes in Humans. Curr Obes Rep 4, 230–240 (2015). https://doi.org/10.1007/s13679-015-0156-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-015-0156-9

Keywords

Navigation