Skip to main content
Log in

An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness

  • Original Paper
  • Published:
EURO Journal on Computational Optimization

Abstract

Many real-world optimization models comprise nonconvex and nonsmooth functions leading to very hard classes of optimization models. In this article, a new interior-point method for the special, but practically relevant class of optimization problems with locatable and separable nonsmooth aspects is presented. After motivating and formalizing the problems under consideration, modifications and extensions to a standard interior-point method for nonlinear programming are investigated to solve the introduced problem class. First theoretical results are given and a numerical study is presented that shows the applicability of the new method for real-world instances from gas network optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Problems 1a–4b fulfill the separable nonsmoothness property and problems 5a–8b do not.

  2. https://www.open-grid-europe.com.

References

  • Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program Ser B 89(1):149–185. doi:10.1007/PL00011391

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke FH (1990) Optimization and nonsmooth analysis. Soc Ind Appl Math. doi:10.1137/1.9781611971309

  • Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR (1998) Nonsmooth analysis and control theory. Graduate texts in mathematics. Springer, Berlin

    Google Scholar 

  • Conn AR, Gould NIM, Toint P (2000) Trust-region methods. MPS-SIAM series on optimization. SIAM

  • CPLEX (2013) User’s manual for CPLEX. IBM Corporation, Armonk, USA, 12.6 edn

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213. doi:10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  • Fügenschuh A, Geißler B, Gollmer R, Hayn C, Henrion R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Mirkov R, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach MC, Willert BM (2013) Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets. Energy Syst 1–25. doi:10.1007/s12667-013-0099-8

  • Fletcher R, Leyffer S (2000) Nonlinear programming without a penalty function. Math Program 91:239–269

    Article  MathSciNet  Google Scholar 

  • Forsgren A, Gill PE, Wright MH (2002) Interior methods for nonlinear optimization. SIAM Rev 44(4):525–597

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fuduli A, Gaudioso M, Giallombardo G (2004) A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim Methods Softw 19(1):89–102. doi:10.1080/10556780410001648112

    Article  MathSciNet  MATH  Google Scholar 

  • Geißler B, Martin A, Morsi A, Schewe L (2012) Using piecewise linear functions for solving MINLPs. In: Lee J, Leyffer S (eds) Mixed integer nonlinear programming. The IMA volumes in mathematics and its applications, vol. 154. Springer, New York. pp 287–314. doi:10.1007/978-1-4614-1927-3_10

  • Geißler B, Morsi A, Schewe L (2013) A new algorithm for MINLP applied to gas transport energy cost minimization. In: Jünger M, Reinelt G (eds) Facets of combinatorial optimization. Springer, Berlin, Heidelberg. pp 321–353. doi:10.1007/978-3-642-38189-8_14

  • Golub GH, van Loan CF (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Grothey A (2002) A second order trust region bundle method for nonconvex nonsmooth optimization. Tech. Rep. Report MS02-001, University of Edinburgh

  • Gu Z, Rothberg E, Bixby R (2003) Gurobi optimizer reference manual, version 5.6. Gurobi Optimization Inc., Houston

    Google Scholar 

  • Hiller B, Humpola J, Lehmann T, Lenz R, Morsi A, Pfetsch ME, Schewe L, Schmidt M, Schwarz R, Schweiger J, Stangl C, Willert BM Computational results for validation of nominations. In: Koch et al. [23], chap 12, pp 233–270. doi:10.1137/1.9781611973693

  • Hiriart-Urruty JB, Lemaréchal C (1993a) Convex analysis and minimization algorithms I: Fundamentals. Grundlehren der mathematischen Wissenschaften, vol. 305. Springer, Berlin

  • Hiriart-Urruty JB, Lemaréchal C (1993b) Convex analysis and minimization algorithms II: advanced theory and bundle methods. Grundlehren der mathematischen Wissenschaften, vol. 306. Springer, Berlin

  • Karmarkar N (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4(4):373–395. doi:10.1007/BF02579150

    Article  MathSciNet  MATH  Google Scholar 

  • Karmitsa N NonSmooth Optimization (NSO) software. http://napsu.karmitsa.fi/nsosoftware/

  • Khachiyan LG (1979) A polynomial algorithm in linear programming. Sov Math Doklady 20:191–194

    MATH  Google Scholar 

  • Kiwiel KC (1985) Methods of descent for nondifferentiable optimization. Lecture Notes in Math, vol 1133. Springer-Verlag, Berlin, New York

  • Koch T, Hiller B, Pfetsch ME, Schewe L (eds) (2015) Evaluating gas network capacities. SIAM-MOS series on optimization. SIAM. doi:10.1137/1.9781611973693

  • Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601. doi:10.1137/0802028

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal J, Wächter A, Waltz RA (2009) Adaptive barrier update strategies for nonlinear interior methods. SIAM J Optim 19(4):1674–1693. doi:10.1137/060649513

    Article  MATH  Google Scholar 

  • Pfetsch ME, Fügenschuh A, Geißler B, Geißler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach MC, Vigerske S, Willert BM (2015) Validation of nominations in gas network optimization: models, methods, and solutions. Optim Methods Softw 30(1):15–53. doi:10.1080/10556788.2014.888426

    Article  MathSciNet  Google Scholar 

  • Ruszczyński A (2006) Nonlinear optimization. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Schmidt M (2013) A generic interior-point framework for nonsmooth and complementarity constrained nonlinear optimization. Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover

  • Schmidt M, Steinbach MC, Willert BM (2013) A primal heuristic for nonsmooth mixed integer nonlinear optimization. In: Jünger M, Reinelt G (eds) Facets of combinatorial optimization. Springer, Berlin, Heidelberg, pp 295–320. doi:10.1007/978-3-642-38189-8_13

  • Schmidt M, Steinbach MC, Willert BM (2015) High detail stationary optimization models for gas networks. Optim Eng 16(1):131–164. doi:10.1007/s11081-014-9246-x

    Article  MathSciNet  Google Scholar 

  • Tits AL, Wächter A, Bakhtiari S, Urban TJ, Lawrence CT (2003) A primal-dual interior-point method for nonlinear programmng with strong global and local convergence properties. SIAM J Optim 14(1):173–199

    Article  MathSciNet  MATH  Google Scholar 

  • Ulbrich M, Ulbrich S, Vicente LN (2004) A globally convergent primal-dual interior-point filter method for nonlinear programming. Math Program 100(2):379–410. doi:10.1007/s10107-003-0477-4

    Article  MathSciNet  MATH  Google Scholar 

  • Vanderbei RJ (2006) LOQO user’s manual-version 4.05. Princeton University, School of Engineering and Applied Science, Department of Operations Research and Financial Engineering, Princeton, New Jersey

    Google Scholar 

  • Vanderbei RJ, Shanno DF (1997) An interior-point algorithm for nonconvex nonlinear programming. Comput Optim Appl 13:231–252

    Article  MathSciNet  Google Scholar 

  • Wächter A, Biegler LT (2000) Failure of global convergence for a class of interior point methods for nonlinear programming. Math Program 88(3):565–574. doi:10.1007/PL00011386

    Article  MathSciNet  MATH  Google Scholar 

  • Wächter A, Biegler LT (2005) Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J Optim 16(1):1–31. doi:10.1137/S1052623403426556

    Article  MathSciNet  MATH  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57. doi:10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  • Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107(3):391–408. doi:10.1007/s10107-004-0560-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the German Federal Ministry of Economics and Technology owing to a decision of the German Bundestag. The responsibility for the content of this publication lies with the author. The author would also like to thank Open Grid Europe GmbH and the project partners in the ForNe consortium. This research was performed as part of the Energie Campus Nürnberg and supported by funding through the “Aufbruch Bayern (Bavaria on the move)” initiative of the state of Bavaria. Moreover, the author thanks Marc C. Steinbach, Jan Thiedau, and Andreas Wächter for several comments on the algorithm. At last, the author is also very grateful to three anonymous referees, whose comments greatly helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmidt.

Appendix A: Low-dimensional test problems

Appendix A: Low-dimensional test problems

1.1 A.1 Problem 1a (Fig. 6)

$$\begin{aligned} \min \quad&f(x) = -x_1 - x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - |x_1| \le 0,\\&c_2 (x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + x_1^2 - 1 \le 0,\\&x_2 \ge -1 \end{aligned}$$
Fig. 6
figure 6

Illustration of test problem 1a

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (0.61803,0.61803)\)

Objective value: \(f(x^*) = -1.23606\).

1.2 A.2 Problem 1b (Fig. 7)

$$\begin{aligned} \min \quad&f(x) = -x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - |x_1| \ge 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + x_1^2 -1 \le 0 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (0, 1)\)

Objective value: \(f(x^*) = -1\).

Fig. 7
figure 7

Illustration of test problem 1b

1.3 A.3 Problem 2a (Fig. 8)

$$\begin{aligned} \min \quad&f(x) = x_1\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - x_1^2 \ge 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + |x_1| -1 \le 0 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (-0.61804, 0.38197)\)

Objective value: \(f(x^*) = -0.61804\).

Fig. 8
figure 8

Illustration of test problem 2a

1.4 A.4 Problem 2b (Fig. 9)

$$\begin{aligned} \min \quad&f(x) = x_1\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - x_1^2 \le 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + |x_1| -1 \le 0,\\&x_2 \ge -1 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (-2, -1)\)

Objective value: \(f(x^*) = -2\).

Fig. 9
figure 9

Illustration of test problem 2b

1.5 A.5 Problem 3a (Fig. 10)

$$\begin{aligned} \min \quad&f(x) = -x_1 - x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - \max \{0,x_1\} \ge 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + x_1^2 -1 \le 0 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (0.5, 0.75)\)

Objective value: \(f(x^*) = -1.25\).

Fig. 10
figure 10

Illustration of test problem 3a

1.6 A.6 Problem 3b (Fig. 11)

$$\begin{aligned} \min \quad&f(x) = -x_1 - x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - \max \{0, x_1\} \le 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + x_1^2 -1 \le 0,\\&x_2 \ge -1 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (0.61803, 0.61803)\)

Objective value: \(f(x^*) = -1.23606\).

Fig. 11
figure 11

Illustration of test problem 3b

1.7 A.7 Problem 4a (Fig. 12)

$$\begin{aligned} \min \quad&f(x) = -x_1\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - \min \{0, -x_1\} \ge 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + x_1^2 -1 \le 0 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (1.6180, -1.6180)\)

Objective value: \(f(x^*) = 1.6180\).

Fig. 12
figure 12

Illustration of test problem 4a

1.8 A.8 Problem 4b (Fig. 13)

$$\begin{aligned} \min \quad&f(x) = -x_1\\ \text {s.t.}\quad&c_1(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 - \min \{0, -x_1\} \le 0,\\&c_2(x_1,x_2) \mathrel {{\mathop :}{=}}x_2 + x_1^2 -1 \le 0,\\&x_2 \ge -1 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (1, -1)\)

Objective value: \(f(x^*) = -1\).

Fig. 13
figure 13

Illustration of test problem 4b

1.9 A.9 Problem 5a (Fig. 14)

$$\begin{aligned} \min \quad&f(x) = x_1\\ \text {s.t.}\quad&c_1(x_1,x_2) \ge 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 - (x_1-1)^2 + 1 , &{} \quad x_1 < 1, \\ x_2 + x_1 , &{} \quad x_1 \ge 1, \end{array}\right. }\\&x_1 \le 2, \\&x_2 \le 2 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1 - 1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (-0.73205, 2)\)

Objective value: \(f(x^*) = -0.73205\).

Fig. 14
figure 14

Illustration of test problem 5a

1.10 A.10 Problem 5b (Fig. 15)

$$\begin{aligned} \min \quad&f(x) = x_1\\ \text {s.t.}\quad&c_1(x_1,x_2) \le 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 - (x_1-1)^2 + 1 , &{} x_1 < 1, \\ x_2 + x_1 , &{} x_1 \ge 1, \end{array}\right. },\\&x_1 \ge -2, \\&-2 \le x_2 \le 2 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1-1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (-2, x_2^*)\) with \(-2 \le x_2^2 \le 2\)

Objective value: \(f(x^*) = -2\).

Fig. 15
figure 15

Illustration of test problem 5b

1.11 A.11 Problem 6a (Fig. 16)

$$\begin{aligned} \min \quad&f(x) = -x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \le 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 + (x_1-1)^2 + 1 , &{} x_1 \le 1, \\ x_2 + x_1 , &{} x_1 > 1, \end{array}\right. }\\&x_2 \ge -2 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1-1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (1, -1)\)

Objective value: \(f(x^*) = 1\).

Fig. 16
figure 16

Illustration of test problem 6a

1.12 A.12 Problem 6b (Fig. 17)

$$\begin{aligned} \min \quad&f(x) = x_1 + x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \ge 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 + (x_1-1)^2 + 1 , &{} x_1 \le 1, \\ x_2 + x_1 , &{} x_1 > 1, \end{array}\right. }\\&0 \le x_1 \le 2, \\&x_2 \le 0 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1-1\)

Global optimal solution: \(x^* = (x_1^*, x_2^*) = (0, -2)\)

Global optimal objective value: \(f(x^*) = -2\)

Local optimal solution: \(x^* = (x_1^*, x_2^*)\) with \(x_1^* \in (1,2]\) and \(x_2^* = -x_1^*\).

Local optimal objective value: \(f(x^*) = 0\).

Fig. 17
figure 17

Illustration of test problem 6b

1.13 A.13 Problem 7a (Fig. 18)

$$\begin{aligned} \min \quad&f(x) = x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \ge 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 - (x_1-1)^2 - 1 , &{} x_1 \le 1, \\ x_2 - x_1 , &{} x_1 > 1, \end{array}\right. }\\&x_2 \le 2 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1-1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (1, 1)\)

Objective value: \(f(x^*) = 1\).

Fig. 18
figure 18

Illustration of test problem 7a

1.14 A.14 Problem 7b (Fig. 19)

$$\begin{aligned} \min \quad&f(x) = -x_1 - x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \le 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 - (x_1-1)^2 - 1 , &{} x_1 \le 1, \\ x_2 - x_1 , &{} x_1 > 1, \end{array}\right. }\\&0 \le x_1 \le 2, \\&x_2 \ge 0 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1-1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (2, 2)\)

Objective value: \(f(x^*) = -4\).

Fig. 19
figure 19

Illustration of test problem 7b

1.15 A.15 Problem 8a (Fig. 20)

$$\begin{aligned} \min \quad&f(x) = -x_1 - x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \ge 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 + (x_1+1)^2 + 1 , &{} x_1 \le -1, \\ x_2 - x_1 , &{} x_1 > -1, \end{array}\right. }\\&x_1 \ge -2, \\&x_2 \le 2 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1+1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (2, 2)\)

Objective value: \(f(x^*) = -4\).

Fig. 20
figure 20

Illustration of test problem 8a

Fig. 21
figure 21

Illustration of test problem 8b

1.16 A.16 Problem 8b (Fig. 21)

$$\begin{aligned} \min \quad&f(x) = x_1 + x_2\\ \text {s.t.}\quad&c_1(x_1,x_2) \le 0, \quad c_1(x_1,x_2) \mathrel {{\mathop :}{=}}{\left\{ \begin{array}{ll} x_2 + (x_1+1)^2 + 1 , &{} x_1 \le -1, \\ x_2 - x_1 , &{} x_1 > -1, \end{array}\right. }\\&x_1 \le 2, \\&x_2 \ge -2 \end{aligned}$$

Localization functions: \(\ell _1(x_1,x_2) = x_1+1\)

Optimal solution: \(x^* = (x_1^*, x_2^*) = (-2, -2)\)

Objective value: \(f(x^*) = -4\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, M. An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness. EURO J Comput Optim 3, 309–348 (2015). https://doi.org/10.1007/s13675-015-0039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13675-015-0039-6

Keywords

Mathematics Subject Classification

Navigation