Skip to main content

Advertisement

Log in

HPV Vaccination: Current Global Status

  • Management of HPV and Associated Cervical Lesions (L Denny, Section Editor)
  • Published:
Current Obstetrics and Gynecology Reports Aims and scope Submit manuscript

Abstract

Human papillomavirus vaccines have been in use in populations for nearly 10 years. They now have an established record of high efficacy, effectiveness and safety in the prevention of vaccine-type HPV infection and disease, including genital warts and pre-cancers. Their considerable immunogenicity has resulted in trials to study two-dose schedules, which are now approved by WHO and in many countries for use in young adolescents at a spacing of at least 6 months between doses. As of mid 2015, 65 countries have HPV vaccines on their national immunisation schedule, with variable coverage achieved to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30 Suppl 5:F12–23.

    Article  PubMed  Google Scholar 

  2. Drolet M, Benard E, Boily MC, Ali H, Baandrup L, Bauer H, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–80. Excellent summary of the impacts of HPV vaccination to date.

    Article  PubMed  Google Scholar 

  3. Global Advisory Committee on Vaccine Safety Statement on the continued safety of HPV vaccination. March 12, 2014. Available at: http://www.who.int/vaccine_safety/committee/topics/hpv/GACVS_State ment_HPV_12_Mar_2014.pdf?ua=1

  4. Roteli-Martins CM, Naud P, De Borba P, Teixeira JC, De Carvalho NS, Zahaf T, et al. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immunother. 2012;8(3):390–7.

    Article  PubMed  Google Scholar 

  5. Nygard M KS, Dillner J et al. Long-term effectiveness and immunogenicity of Gardasil in the Nordic countries. Abstract OC 6–3, Eurogin 2013, Florence, Italy 3–6 November (pg 201 abstract book). 2013.

  6. Wheeler CM, Castellsague X, Garland SM, Szarewski A, Paavonen J, Naud P, et al. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  7. Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, Castellsague X, et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4- year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  8. Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer prevention research (Philadelphia). Cancer Prevent Res (Philadelphia, PA). 2009;2(10):868–78.

    Article  Google Scholar 

  9. Giuliano AR, Palefsky JM, Goldstone S, Moreira Jr ED, Penny ME, Aranda C, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364(5):401–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Palefsky JM, Giuliano AR, Goldstone S, Moreira Jr ED, Aranda C, Jessen H, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. Eng J Med. 2011;365(17):1576–85.

    Article  CAS  Google Scholar 

  11. Kreimer AR, Gonzalez P, Katki HA, Porras C, Schiffman M, Rodriguez AC, et al. Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncol. 2011;12(9):862–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Herrero R, Quint W, Hildesheim A, Gonzalez P, Struijk L, Katki HA, et al. Reduced prevalence of oral human papillomavirus (HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS ONE. 2013;8(7):e68329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Apter D, Wheeler CM, Paavonen J, Castellsague X, Garland SM, Skinner SR, et al. Efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer in young women: final event-driven analysis of the randomised, double-blind PATRICIA trial. Clin Vaccin Immunol. 2015;22(4):361–73.

    Article  CAS  Google Scholar 

  14. Lang Kuhs KA, Gonzalez P, Rodriguez AC, van Doorn LJ, Schiffman M, Struijk L, et al. Reduced prevalence of vulvar HPV 16/18 infection among women who received the HPV 16/18 bivalent vaccine: a nested analysis within the Costa Rica Vaccine Trial. J Infect Dis. 2014;210(12):1890–9.

    Article  PubMed  Google Scholar 

  15. Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez- Avila M, et al. Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ (Clin Res Ed). 2010;341:c3493.

    Article  Google Scholar 

  16. Ault KA, Future II, Group S. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet. 2007;369(9576):1861–8.

    Article  PubMed  Google Scholar 

  17. Joura EA, Leodolter S, Hernandez-Avila M, Wheeler CM, Perez G, Koutsky LA, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet. 2007;369(9574):1693–702.

    Article  CAS  PubMed  Google Scholar 

  18. Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Leodolter S, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Eng J Med. 2007;356(19):1928–43.

    Article  CAS  Google Scholar 

  19. Castellsague X, Munoz N, Pitisuttithum P, Ferris D, Monsonego J, Ault K, et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br J Cancer. 2011;105(1):28–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Skinner SR, Szarewski A, Romanowski B, Garland SM, Lazcano-Ponce E, Salmeron J, et al. Efficacy, safety, and immunogenicity of the human papillomavirus 16/18 AS04-adjuvanted vaccine in women older than 25 years: 4-year interim follow-up of the phase 3, double-blind, randomised controlled VIVIANE study. Lancet. 2014;384(9961):2213–27.

    Article  CAS  PubMed  Google Scholar 

  21. Joura EA, Garland SM, Paavonen J, Ferris DG, Perez G, Ault KA, et al. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ (Clin Res ed). 2012;344:e1401. Analysis of trial data suggesting a benefit of vaccination for secondary prevention of new infection and disease in women with previous high grade disease.

    Article  Google Scholar 

  22. Kavanagh K, Pollock KG, Potts A, Love J, Cuschieri K, Cubie H, et al. Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types. Br J Cancer. 2014;110(11):2804–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mesher D, Soldan K, Howell-Jones R, Panwar K, Manyenga P, Jit M, et al. Reduction in HPV 16/18 prevalence in sexually active young women following the introduction of HPV immunisation in England. Vaccine. 2013;32(1):26–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Markowitz LE, Hariri S, Lin C, Dunne EF, Steinau M, McQuillan G, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. J Infect Dis. 2013;208(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  25. Dunne EF, Naleway A, Smith N, Crane B, Weinmann S, Braxton J, et al. Reduction in HPV vaccine type prevalence among young women screened for cervical cancer in an integrated health care delivery system, United States 2007, 2012–2013. J Infect Dis. 2015.

  26. Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Liu B, Bateson D, et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross- sectional study. Lancet Infect Dis. 2014;14(10):958–66.

    Article  PubMed  Google Scholar 

  27. Ali H, Donovan B, Wand H, Read TR, Regan DG, Grulich AE, et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ (Clin Res Ed). 2013;346:f2032.

    Google Scholar 

  28. Sando N, Kofoed K, Zachariae C, Fouchard J. A reduced national incidence of anogenital warts in young Danish men and women after introduction of a national quadrivalent human papillomavirus vaccination programme for young women—an ecological study. Acta Dermato-Venereol. 2014;94(3):288–92.

    Article  Google Scholar 

  29. Gertig DM, Brotherton JM, Budd AC, Drennan K, Chappell G, Saville AM. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Med. 2013;11(1):227.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Crowe E, Pandeya N, Brotherton JM, Dobson AJ, Kisely S, Lambert SB, et al. Effectiveness of quadrivalent human papillomavirus vaccine for the prevention of cervical abnormalities: case–control study nested within a population based screening programme in Australia. BMJ (Clin Res Ed). 2014;348:g1458.

    Google Scholar 

  31. Pollock KG, Kavanagh K, Potts A, Love J, Cuschieri K, Cubie H, et al. Reduction of low- and high-grade cervical abnormalities associated with high uptake of the HPV bivalent vaccine in Scotland. Br J Cancer. 2014;111(9):1824–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Baldur-Felskov B, Dehlendorff C, Munk C, Kjaer SK. Early impact of human papillomavirus vaccination on cervical neoplasia—nationwide follow-up of young Danish women. J Natl Cancer Inst Nat Cancer Inst. 2014;106(3):djt460.

    Article  Google Scholar 

  33. Mahmud SM, Kliewer EV, Lambert P, Bozat-Emre S, Demers AA. Effectiveness of the quadrivalent human papillomavirus vaccine against cervical dysplasia in Manitoba, Canada. J Clin Oncol. 2014;32(5):438–43.

    Article  PubMed  Google Scholar 

  34. Brotherton JM, Saville AM, May CL, Chappell G, Gertig DM. Human papillomavirus vaccination is changing the epidemiology of high-grade cervical lesions in Australia. Cancer Causes Control. 2015;26(6):953–4.

    Article  PubMed  Google Scholar 

  35. Cervical screening in Australia 2012–2013. Australian Institute of Health and Welfare. Cancer Series No. 93 Cat. No. CAN 91.

  36. Schiller JT, Castellsague X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30 Suppl 5:F123–38. Comprehensive summary of the HPV vaccine trials.

    Article  CAS  PubMed  Google Scholar 

  37. Ferris D, Samakoses R, Block SL, Lazcano-Ponce E, Restrepo JA, Reisinger KS, et al. Long-term study of a quadrivalent human papillomavirus vaccine. Pediatrics. 2014;134(3):e657–65.

    Article  PubMed  Google Scholar 

  38. Brown D, Muller M, Sehr P, Pawlita M, Seitz H, Rubio I, et al. Concordance assessment between a multiplexed competitive Luminex immunoassay, a multiplexed IgG Luminex immunoassay, and a pseudovirion-based neutralization assay for detection of human papillomaviruse types 16 and 18. Vaccine. 2014;32(44):5880–7.

    Article  CAS  PubMed  Google Scholar 

  39. Brown DR, Garland SM, Ferris DG, Joura E, Steben M, James M, et al. The humoral response to Gardasil over four years as defined by total IgG and competitive Luminex immunoassay. Hum Vaccin. 2011;7(2):230–8.

    Article  CAS  PubMed  Google Scholar 

  40. Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV- 6/11/16/18 vaccine: follow-up from months 12–24 in a phase III randomized study of healthy women aged 18–45 years. Human Vaccines. 2011;7:1343–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Malagon T, Drolet M, Boily MC, Franco EL, Jit M, Brisson J, et al. Cross- protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(10):781–9.

    Article  CAS  PubMed  Google Scholar 

  42. Romanowski B, Schwarz TF, Ferguson LM, Ferguson M, Peters K, Dionne M, et al. Immune response to the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose or 3-dose schedule up to 4 years after vaccination: Results from a randomized study. Hum Vacc Immunother. 2014;10(5).

  43. Dobson SR, McNeil S, Dionne M, Dawar M, Ogilvie G, Krajden M, et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA. 2013;309(17):1793–802. Trial demonstrating equivalent immunogenicity of two doses of quadrivalent HPV vaccine in young adolescents.

    Article  CAS  PubMed  Google Scholar 

  44. Human papillomavirus vaccines: WHO position paper, October 2014, WER. Available at: http://www.who.int/wer/2014/wer8943.pdf?ua=1

  45. Romanowski B, Schwarz TF, Ferguson L, Peters K, Dionne M, Behre U, et al. Sustained immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine administered as a two-dose schedule in adolescent girls: five-year clinical data and modelling predictions from a randomized study. Hum Vaccin Immunother. 2015; 15:0. Study showing sustained immunogenicity of two doses of bivalent HPV vaccine in adolescents and predicting durable protection.

  46. Kreimer AR, Struyf F, Del Rosario-Raymundo MR, Hildesheim A, Skinner SR, Wacholder S, et al. Efficacy of fewer than three doses of an HPV- 16/18 AS04 adjuvanted vaccine: combined analysis of data from the Cosa Rica vaccine trial and the PATRICIA Trial. Lancet Oncol. 2015;16(7):775–86. Analysis suggesting equivalent efficacy to three doses from one or two doses of bivalent HPV vaccine.

    Article  CAS  PubMed  Google Scholar 

  47. Schiller JT, Lowy DR. Raising expectations for subunit vaccine. J Infect Dis. 2015;211(9):1373–5.

    Article  PubMed  Google Scholar 

  48. Herweijer E, Leval A, Ploner A, Eloranta S, Simard JF, Dillner J, et al. Association of varying number of doses of quadrivalent human papillomavirus vaccine with incidence of condyloma. JAMA. 2014;311(6):597–603.

    Article  CAS  PubMed  Google Scholar 

  49. Brotherton JML, Malloy M, Budd A, Saville M, Drennan K, Gertig DM. Effectiveness of less than three doses of quadrivalent human papillomavirus vaccine against cervical intraepithelial neoplasia when administered using a standard dose spacing schedule: observational cohort of young women in Australia. Papillomavirus Research. in press, 2015.

  50. Petrosky E, Bocchini Jr JA, Hariri S, Chesson H, Curtis CR, Saraiya M, et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR. 2015;64(11):300–4.

    PubMed  Google Scholar 

  51. Joura EA, Giuliano AR, Iversen OE, Bouchard C, Mao C, Mehlsen J, et al. A 9- valent HPV vaccine against infection and intraepithelial neoplasia in women. N Eng J Med. 2015;372(8):711–23. RCT analysis for the nine valent HPV vaccine showing equivalent immunogenicity as quadrivalent vaccine against types 6/11/16/18 and high efficacy against types 31/33/45/52/58.

    Article  CAS  Google Scholar 

  52. Joura EA, Ault KA, Bosch FX, Brown D, Cuzick J, Ferris D, et al. Attribution of 12 high-risk human papillomavirus genotypes to infection and cervical disease. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1997–2008.

    Article  PubMed  Google Scholar 

  53. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–56.

    Article  PubMed  Google Scholar 

  54. Callreus T, Svanstrom H, Nielsen NM, Poulsen S, Valentiner-Branth P, Hviid A. Human papillomavirus immunisation of adolescent girls and anticipated reporting of immune-mediated adverse events. Vaccine. 2009;27(22):2954–8.

    Article  PubMed  Google Scholar 

  55. Siegrist CA, Lewis EM, Eskola J, Evans SJ, Black SB. Human papilloma virus immunization in adolescent and young adults: a cohort study to illustrate what events might be mistaken for adverse reactions. Pediatr Infect Dis. 2007;26(11):979–84.

    Article  Google Scholar 

  56. Sutton I, Lahoria R, Tan I, Clouston P, Barnett M. CNS demyelination and quadrivalent HPV vaccination. Mult Scler. 2009;15(1):116–9.

    Article  CAS  PubMed  Google Scholar 

  57. Arnheim-Dahlstrom L, Pasternak B, Svanstrom H, Sparen P, Hviid A. Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: cohort study. BMJ (Clin Res Ed). 2013;347:f5906. Robust whole of population safety study establishing no increase in autoimmune, neurological or thromboembolic disease in HPV vaccine recipients.

    Google Scholar 

  58. Scheller NM, Svanstrom H, Pasternak B, Arnheim-Dahlstrom L, Sundstrom K, Fink K, et al. Quadrivalent HPV vaccination and risk of multiple sclerosis and other demyelinating diseases of the central nervous system. JAMA. 2015;313(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  59. Chao C, Klein NP, Velicer CM, Sy LS, Slezak JM, Takhar H, et al. Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J Inter Med. 2012;271(2):193–203.

    Article  CAS  Google Scholar 

  60. Gee J, Naleway A, Shui I, Baggs J, Yin R, Li R, et al. Monitoring the safety of quadrivalent human papillomavirus vaccine: findings from the Vaccine Safety Datalink. Vaccine. 2011;29(46):8279–84.

    Article  PubMed  Google Scholar 

  61. Grimaldi-Bensouda L, Guillemot D, Godeau B, Benichou J, Lebrun-Frenay C, Papeix C, et al. Autoimmune disorders and quadrivalent human papillomavirus vaccination of young female subjects. J Internal Med. 2014;275(4):398–408.

    Article  CAS  PubMed  Google Scholar 

  62. Goss MA, Lievano F, Seminack MM, Dana A. No adverse signals observed after exposure to human papillomavirus type 6/11/16/18 vaccine during pregnancy: 6-year pregnancy registry data. Obstet & Gynecol. 2014;123 Suppl 1:93S.

    Article  Google Scholar 

  63. Dana A, Buchanan KM, Goss MA, Seminack MM, Shields KE, Korn S, et al. Pregnancy outcomes from the pregnancy registry of a human papillomavirus type 6/11/16/18 vaccine. Obstet & Gynecol. 2009;114(6):1170–8.

    Article  Google Scholar 

  64. Garland SM, Ault KA, Gall SA, Paavonen J, Sings HL, Ciprero KL, et al. Pregnancy and infant outcomes in the clinical trials of a human papillomavirus type 6/11/16/18 vaccine: a combined analysis of five randomized controlled trials. Obstet & Gynecol. 2009;114(6):1179–88.

    Article  Google Scholar 

  65. Moro PL, Zheteyeva Y, Lewis P, Shi J, Yue X, Museru OI, et al. Safety of quadrivalent human papillomavirus vaccine (Gardasil) in pregnancy: adverse events among non-manufacturer reports in the Vaccine Adverse Event Reporting System, 2006–2013. Vaccine. 2015;33(4):519–22.

    Article  CAS  PubMed  Google Scholar 

  66. Angelo MG, David MP, Zima J, Baril L, Dubin G, Arellano F, et al. Pooled analysis of large and long-term safety data from the human papillomavirus-16/18-AS04-adjuvanted vaccine clinical trial programme. Pharmacoepidemiol Drug Saf. 2014;23(5):466–79.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Vichnin M, Bonanni P, Klein NP, Garland SM, Block SL, Kjaer SK, et al. An overview of quadrivalent human papillomavirus vaccine safety—2006 to 2015. Pediat Infect Dis. 2015.

  68. Gardasil (quadrivalent human papillomavirus vaccine), update 2. Australian Government, Department of Health, Therapeutic Goods Administration. Available at: https://www.tga.gov.au/alert/gardasil-quadrivalent-human-papillomavirus-vaccine-update-2.

  69. Hanley SJ, Yoshioka E, Ito Y, Kishi R. HPV vaccination crisis in Japan. Lancet. 2015;385(9987):2571.

    Article  PubMed  Google Scholar 

  70. O’Dowd A. Teenager who died after having HPV vaccine had a malignant chest tumour. BMJ (Clin Res Ed). 2009;339:b4032.

    Article  Google Scholar 

  71. Buttery JP, Madin S, Crawford NW, Elia S, La Vincente S, Hanieh S, et al. Mass psychogenic response to human papillomavirus vaccination. Med J Aust. 2008;189(5):261–2.

    PubMed  Google Scholar 

  72. EMA to further clarify safety profile of human papillomavirus (HPV) vaccines. Press release, European Medicines Agency, Science Medicines Health, 13 July, 2015. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2015/07/WC500189481.pdf.

  73. Markowitz LE, Tsu V, Deeks SL, Cubie H, Wang SA, Vicari AS, et al. Human papillomavirus vaccine introduction—the first five years. Vaccine. 2012;30 Suppl 5:F139–48.

    Article  PubMed  Google Scholar 

  74. WHO/UNICEF joint reporting form, 1 July 2015. Available from: http://www.who.int/immunization/monitoring_surveillance/data/en/.

  75. Eight in 10 adolescent girls in the Americas have access to HPV vaccine, following its introduction in Brazil. Washington DC, March 20, 2014 (PAHO/WHO) Available at: http://www.paho.org/hq/index.php?option=com_content&view=article& id=9394:el-80-de-las-ninas-adolescentes-de-las-americas-tendra-acceso- a-la-vacuna-contra-el-vph-tras-haberse-introducido-en-brasil- &catid=740:news-press-releases&Itemid=1926&lang=en 2014.

  76. Hanson CM, Eckert L, Bloem P, Cernuschi T. Gavi HPV programs: application to implementation. Vaccines. 2015;3:408–19.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Rubin R. Why the "no-brainer" HPV vaccine is being ignored. JAMA. 2015;313(15):1502–4.

    Article  PubMed  Google Scholar 

  78. LaMontagne DS, Barge S, Le NT, Mugisha E, Penny ME, Gandhi S, et al. Human papillomavirus vaccine delivery strategies that achieved high coverage in low- and middle-income countries. Bull WHO. 2011;89(11):821–30B.

    PubMed Central  PubMed  Google Scholar 

  79. Ladner J, Besson MH, Hampshire R, Tapert L, Chirenje M, Saba J. Assessment of eight HPV vaccination programs implemented in lowest income countries. BMC Pub Health. 2012;12:370.

    Article  Google Scholar 

  80. Ladner J, Besson MH, Rodrigues M, Audureau E, Saba J. Performance of 21 HPV vaccination programs implemented in low and middle-income countries, 2009–2013. BMC Public Health. 2014;14:670.

    Article  PubMed Central  PubMed  Google Scholar 

  81. van den Ent MM, Brown DW, Hoekstra EJ, Christie A, Cochi SL. Measles mortality reduction contributes substantially to reduction of all cause mortality among children less than five years of age, 1990–2008. J Infect Dis. 2011;204 Suppl 1:S18–23.

    PubMed  Google Scholar 

  82. Daugla DM, Gami JP, Gamougam K, Naibei N, Mbainadji L, Narbe M, et al. Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study [corrected]. Lancet. 2014;383(9911):40–7.

    Article  CAS  PubMed  Google Scholar 

  83. Vermandere H, Naanyu V, Mabeya H, Vanden Broeck D, Michielsen K, Degomme O. Determinants of acceptance and subsequent uptake of the HPV vaccine in a cohort in Eldoret, Kenya. PLoS ONE. 2014;9(10):e109353.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Bartolini RM, Winkler JL, Penny ME, LaMontagne DS. Parental acceptance of HPV vaccine in Peru: a decision framework. PLoS ONE. 2012;7(10):e48017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Dorji T, Tshomo U, Phuntsho S, Tamang TD, Tshokey T, Baussano I, et al. Introduction of a national HPV vaccination program into Bhutan. Vaccine. 2015;33(31):3726–30.

    Article  PubMed  Google Scholar 

  86. Binagwaho A, Wagner CM, Gatera M, Karema C, Nutt CT, Ngabo F. Achieving high coverage in Rwanda’s national human papillomavirus vaccination programme. Bull WHO. 2012;90(8):623–8.

    PubMed Central  PubMed  Google Scholar 

  87. McRee AL, Gilkey MB, Dempsey AF. HPV vaccine hesitancy: findings from a statewide survey of health care providers. J Pediatr Health Care. 2014;28(6):541–9.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Verger P, Fressard L, Collange F, Gautier A, Jestin C, Launay O, et al. Vaccine hesitancy among general practitioners and its determinants during controversies: a national cross-sectional survey in France. EBioMedicine, in press. 2015.

  89. WHO (2014) Considerations regarding consent in vaccinating children and adolescents between 6–17 years old. Available at: http://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAAahUKEwjC5-2FxvDGAhWDG6YKHdx-Bm8&url=http%3A%2F%2Fwww.who.int%2Fimmunization%2Fprogrammes_systems%2Fpolicies_strategies%2Fconsent_note_en.pdf&ei=MH-wVcKPBYO3mAXc_Zn4Bg&usg=AFQjCNEwRluf1NJ7DKWnb6wL5gw-jDddWQ&sig2=iFyYo16UYKqT36csUH6JXA&bvm=bv.98476267,d.dGY

  90. Galagan SR, Paul P, Menezes L, LaMontagne DS. Influences on parental acceptance of HPV vaccination in demonstration projects in Uganda and Vietnam. Vaccine. 2013;31(30):3072–8.

    Article  PubMed  Google Scholar 

  91. Remes P, Selestine V, Changalucha J, Ross DA, Wight D, de Sanjose S, et al. A qualitative study of HPV vaccine acceptability among health workers, teachers, parents, female pupils, and religious leaders in northwest Tanzania. Vaccine. 2012;30(36):5363–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Julia M. L. Brotherton declares to have been an investigator on investigator designed unrestricted epidemiological research grants partially funded through bioCSL but has received no personal financial benefits.

Paul J. N. Bloem declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. L. Brotherton.

Additional information

This article is part of the Topical Collection on Management of HPV and Associated Cervical Lesions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brotherton, J.M.L., Bloem, P.J.N. HPV Vaccination: Current Global Status. Curr Obstet Gynecol Rep 4, 220–233 (2015). https://doi.org/10.1007/s13669-015-0136-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13669-015-0136-9

Keywords

Navigation