Skip to main content
Log in

Microstructure Evolution and Tensile Behavior of Dissimilar Friction Stir-Welded Pure Copper and Dual-Phase Brass

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

6-mm-thick pure copper and dual-phase brass plates were joined using friction stir welding (FSW). The role of plate location prior to welding and the tool rotational speed on the microstructure evolution was evaluated and correlated to the tensile properties of the joint. All the joints with copper on advancing side produced defects. Typical zones commonly found in FSW joints were observed. TMAZ was not found on the copper side, and no coarsening of grains was noticed in the HAZ on the brass side. The microstructure of the weld zone was heterogeneous and grouped into three categories. The plate position and the tool rotational speed influenced the material flow and the formation of different structures. The weld zone was further characterized by ultra-fine grains, dislocations and annealing twins. The hardness across the weld zone was varying considerably. The process parameter had an opposite effect on the hardness of brass and copper portion of the weld zone. The joints with brass on advancing side showed higher tensile strength. The fracture location and surfaces were further reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.H. Wang, L.R. Xiao, X.J. Zhao, W. Hu, Y.F. Song, W. Zhang, H. Zhou, Microstructure and mechanical properties of columnar-grained copper produced by the Ohno continuous casting technique. Mater. Sci. Eng. A 639, 122–130 (2015)

    Article  CAS  Google Scholar 

  2. A. Das, V. Verma, C.B. Basak, Elucidating microstructure of spinodal copper alloy through annealing. Mater. Charact. 120, 152–158 (2016)

    Article  CAS  Google Scholar 

  3. V.J. Keast, J. Ewald, K.S.B. De Silva, M.B. Cortie, B. Monnier, D. Cuskelly, E.H. Kisi, Optical properties and electronic structure of the Cu–Zn brasses. J. Alloy. Compd. 647, 129–135 (2015)

    Article  CAS  Google Scholar 

  4. M. Hanief, M.F. Wani, M.S. Charoo, Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis. Eng. Sci. Technol. Int. J. 20, 1220–1226 (2017)

    Article  Google Scholar 

  5. Y.L. Shabtaya, M. Ainali, A. Lea, New brazing processes using anneal-resistant copper and brass alloys. Mater. Des. 25, 83–89 (2004)

    Article  Google Scholar 

  6. Z. Barlas, Effect of friction stir spot weld parameters on Cu/CuZn30 bimetal joints. Int. J. Adv. Manuf. Technol. 80, 161–170 (2015)

    Article  Google Scholar 

  7. L.J. Zhang, J. Ning, X.J. Zhang, G.F. Zhang, J.X. Zhang, Single pass hybrid laser–MIG welding of 4-mm thick copper without preheating. Mater. Des. 74, 1–18 (2015)

    Article  CAS  Google Scholar 

  8. B.G. Oztoprak, E. Akman, M.M. Hanon, M. Günes, S. Gumus, E. Kacar, O. Gundogdu, M. Zeren, A. Demir, Laser welding of copper with stellite 6 powder and investigation using LIBS technique. Opt. Laser Technol. 45, 748–755 (2013)

    Article  Google Scholar 

  9. C. Meran, M. Yuksel, A. Gulsoz, T. Sekercioglu, The welding problems of thin brass plates and TIG pulse welding. Sci. Technol. Weld. Join. 9, 131–137 (2004)

    Article  CAS  Google Scholar 

  10. C. Meran, R. Konig, M. Yuksel, Effect of process parameters on joint properties of brass CuZn37 welded with a pulsed TIG welding power source. Weld. Cut. 8, 36–44 (2009)

    Google Scholar 

  11. S. Elangovan, S. Venkateshwaran, K. Prakasan, Experimental investigations on optimization of ultrasonic welding parameters for copper to brass joints using response surface method and genetic algorithm. Int. J. Adv. Eng. Res. Stud. 1, 55–64 (2012)

    Google Scholar 

  12. L.E. Murr, A review of FSW research on dissimilar metal and alloy systems. J. Mater. Eng. Perform. 19(8), 1071–1089 (2010)

    Article  CAS  Google Scholar 

  13. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R 50, 1–78 (2005)

    Article  Google Scholar 

  14. G. Cam, Friction stir welded structural materials: beyond Al-alloys. Int. Mater. Rev. 56, 1–48 (2011)

    Article  CAS  Google Scholar 

  15. J. Guo, P. Gougeon, X.G. Chen, Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B4C MMC and AA6063 alloy. Mater. Sci. Eng. A 553, 149–156 (2012)

    Article  CAS  Google Scholar 

  16. P. Venkateswaran, A.P. Reynolds, Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys. Mater. Sci. Eng. A 545, 26–37 (2012)

    Article  CAS  Google Scholar 

  17. M.F.X. Muthu, V. Jayabalan, Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints. J. Mater. Process. Technol. 217, 105–113 (2015)

    Article  CAS  Google Scholar 

  18. K.K. Ramachandran, N. Murugan, S. ShashiKumar, Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater. Sci. Eng. A 639, 219–233 (2015)

    Article  CAS  Google Scholar 

  19. Z. Song, K. Nakata, A. Wu, J. Liao, L. Zhou, Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Mater. Des. 57, 269–278 (2014)

    Article  CAS  Google Scholar 

  20. Z. Barlas, H. Uzun, Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets. J. Achiev. Mater. Manuf. Eng. 30, 182–186 (2008)

    Google Scholar 

  21. C. Meran, V. Kovan, Microstructures and mechanical properties of friction stir welded dissimilar copper/brass joints. Mater. Werkst. 39, 521–530 (2008)

    Article  CAS  Google Scholar 

  22. Z. Barlas, H. Uzun, Microstructure and mechanical properties of friction stir butt welded dissimilar pure copper/brass alloy plates. Int. J. Mater. Res. 101, 801–807 (2010)

    Article  CAS  Google Scholar 

  23. M. Erdem, Investigation of structure and mechanical properties of copper-brass plates joined by friction stir welding. Int. J. Adv. Manuf. Technol. 76, 1583–1592 (2015)

    Article  Google Scholar 

  24. L. Zhou, W.L. Zhou, J.C. Feng, W.X. He, Y.X. Huang, S.S. Dong, Effect of rotation speed on the microstructure and mechanical properties of dissimilar friction stir-welded copper/brass metals. Int. J. Adv. Manuf. Technol. 84, 1335–1343 (2016)

    Google Scholar 

  25. S.S. Sekhon, H. Kumar, S. Sehgal, Effect of tool pin profile on performance of friction stir welding of brass–copper-based butt welded joint. Int. J. Mater. Eng. Innov. 7, 236–252 (2016)

    Article  CAS  Google Scholar 

  26. E. Beraha, B. Shpigler, Color Metallography (American Society for Metals, Ohio, 1977)

    Google Scholar 

  27. I. Dinaharan, E.T. Akinlabi, Application of color metallography to study the microstructure of friction stir-welded dual-phase brass using various etchants. Metallogr. Microstruct. Anal. 6, 99–105 (2017)

    Article  CAS  Google Scholar 

  28. W.B. Lee, S.B. Jung, The joint properties of copper by friction stir welding. Mater. Lett. 58, 1041–1046 (2004)

    Article  CAS  Google Scholar 

  29. H.J. Liu, J.J. Shen, Y.X. Huang, L.Y. Kuang, C. Liu, C. Li, Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Sci. Technol. Weld. Join. 14, 577–583 (2009)

    Article  Google Scholar 

  30. K.P. Mehta, V.J. Badheka, A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater. Manuf. Process. 31, 233–254 (2016)

    Article  CAS  Google Scholar 

  31. S. Emami, T. Saeid, Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single phase brass. Acta Metall. Sin. 28, 766–771 (2015)

    Article  CAS  Google Scholar 

  32. Y.S. Sato, H. Takauchi, S.H.C. Park, H. Kokawa, Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Mater. Sci. Eng. A 405, 333–338 (2005)

    Article  Google Scholar 

  33. R. Palanivel, P.K. Mathews, N. Murugan, I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 40, 7–16 (2012)

    Article  CAS  Google Scholar 

  34. P. Xue, G.M. Xie, B.L. Xiao, Z.Y. Ma, L. Geng, Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall. Mater. Trans. A 41, 2010–2021 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Welding Research Cell at Coimbatore Institute of Technology, Microscopy Lab at University of Johannesburg, OIM and Texture Lab at Indian Institute of Technology Bombay, PSG Institute of Advanced Studies and Centre of Excellence at Karunya University for providing the facilities to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dinaharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinaharan, I., Thirunavukkarasu, R., Murugan, N. et al. Microstructure Evolution and Tensile Behavior of Dissimilar Friction Stir-Welded Pure Copper and Dual-Phase Brass. Metallogr. Microstruct. Anal. 8, 735–748 (2019). https://doi.org/10.1007/s13632-019-00579-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00579-4

Keywords

Navigation