Skip to main content

Advertisement

Log in

Studies on Tool Shoulder Diameter of Dissimilar Friction Stir Welding Copper to Stainless Steel

  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This study attempts to investigate the joint efficiency of dissimilar friction stir welds such as electrolytic tough pitch copper to stainless steel (SS) by focusing on identifying the optimum tool shoulder diameter which would provide higher strength joints. Four different shoulder diameters such as 16, 18, 20, and 22 mm of friction stir welding tool are investigated for rest of the constant process parameters. An experimental approach is adopted for the present investigation of dissimilar friction stir welding, and its quality is assessed based on microstructure analysis, mechanical tests along with scanning electron microscopy used to identify the fracture mechanics after failure. Defect-free joints were attained for the weld obtained by 18 mm tool shoulder diameter. Besides, the tool shoulder diameters of 16, 20, and 22 mm were found less suitable for dissimilar Cu–SS welds as decreased joint strength. Maximum joint efficiency (76%) and ultimate tensile strength (173 Mpa) were reported for welds with the 18 mm shoulder tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.P. Mehta, V.J. Badheka, A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater. Manuf. Process. 31(3), 233–254 (2016)

    Article  Google Scholar 

  2. K.P. Mehta, V.J. Badheka, Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater. Manuf. Process. 31(3), 255–263 (2016)

    Article  Google Scholar 

  3. I.V. Mazul, V.A. Belyakov, R.N. Giniatulin, A.A. Gervash, V.E. Kuznetsov, A.N. Makhankov, V.S. Sizene, Preparation to manufacturing of ITER plasma facing components in Russia. Fusion Eng. Des. (2011). https://doi.org/10.1016/j.fusengdes.2011.02.022

    Google Scholar 

  4. Y. Li, X. Liu, Vacuum science and technology for accelerator, Cornell University, Ithaca, NY, January 19–23 (2015)

  5. F. Bertinelli, G. Favre, L.M.A. Ferreira, S. Mathot, L. Rossi, F. Savary, E. Boter, Design and fabrication of superfluid helium heat exchanger tubes for the LHC superconducting magnets, in Proc EPAC. (2004), pp. 1837–1839

  6. R. Singh, K.K. Pant, S. Lal, D.P. Yadav, S.R. Garg, V.K. Raghuvanshi, G. Mundra, Vacuum Brazing of Accelerator Components. J. Phys. Conf. Ser. (2012). https://doi.org/10.1088/1742-6596/390/1/012025

    Google Scholar 

  7. K. Bhanumurthy, D. Joyson, S.B. Jawale, A. Laik, G.K. Dey, Diffusion bonding of nuclear materials, in BARC Newsl. 331, 19–25 (2013). https://inis.iaea.org/search/search.aspx?orig_q=RN:45019900

  8. M. Merola, F. Escourbiac, R. Raffray, P. Chappuis, T. Hirai, A. Martin, Overview and status of ITER internal components. Fusion Eng. Des. 89, 890–895 (2014). https://doi.org/10.1016/j.fusengdes.2014.01.055

    Article  Google Scholar 

  9. S.R. Ghodke, R. Barnwal, J. Mondal, A.S. Dhavle, S. Parashar, M. Kumar, S. Nayak, D. Jayaprakash, V. Sharma, S. Acharya, V.T., Nimje, K.C. Mittal, B.K. Dutta, L.M. Gantayet, Machining and brazing of accelerating RF cavity, in XXVI Int. Symposium on discharges and electrical insulation in vacuum Mumbai, India (2014)

  10. M. Weigla, M. Schmidt, Influence of the feed rate and the lateral beam displacement on the joining quality of laser-welded copper-stainless steel connections. Phys. Proc. (2010). https://doi.org/10.1016/j.phpro.2010.08.029

    Google Scholar 

  11. Y.V. Budkin, Welding joints in dissimilar metals. Weld. Int. (2011). https://doi.org/10.1080/09507116.2011.554254

    Google Scholar 

  12. B. Zhang, J. Zhao, X. Li, G. Chen, State, effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints. Appl. Therm. Eng. (2015). https://doi.org/10.1016/j.applthermaleng.2015.01.052

    Google Scholar 

  13. B.R. Moharana, S. Sahu, S. Sahoo, R. Bathe, Experimental Investigation on Mechanical and Microstructural Properties of AISI 304 to Cu Joints by CO2 Laser. Eng. Sci. Technol. Int. J. (2015). https://doi.org/10.1016/j.jestch.2015.10.004

    Google Scholar 

  14. A. Zapata, P.E. Denney, M.D. Latessa, M. Radke, System and method of welding stainless steel to copper. http://www.google.com/patents/WO2014140763A2?cl=en (2014). Accessed on 15th May 2016

  15. L.A. Andreevskikh, A.A. Drozdov, A.L. Mikhailov, M.Y. Samarokov, O.A. Skachkov, A.A. Deribas, Producing bimetallic steel-copper composites by explosive welding. Steel Transl. (2015). https://doi.org/10.3103/s0967091215010027

    Google Scholar 

  16. G.L. Marois, C. Dellis, J.M. Gentzbittel, F. Moret, HIP’ing of copper alloys to stainless steel. J. Nucl. Mater. 237, 927–931 (1996)

    Article  Google Scholar 

  17. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P.T. Smith, C.J. Dawes, Friction welding. https://www.google.com/patents/US5460317?dq=Thomas+W+et.+al.+Friction+Welding.+1995.&hl=en&sa=X&ved=0ahUKEwiSjrj9u77QAhVKK48KHf-JCTgQ6AEIHDAA (1995). Accessed on 4th April 2017

  18. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, The friction stir welding of aluminium alloys. Int. Mater. Rev. (2009). https://doi.org/10.1179/174328009x411136

    Google Scholar 

  19. K.P. Mehta, V.J. Badheka, Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints. Int. J. Adv. Manuf. Technol. 80(9–12), 2073–2082 (2015)

    Article  Google Scholar 

  20. K.P. Mehta, V.J. Badheka, Effects of tool pin design on formation of defects in dissimilar friction stir welding. Proc. Technol. 23, 513–518 (2016)

    Article  Google Scholar 

  21. K.P. Mehta, V.J. Badheka, Influence of tool pin design on properties of dissimilar copper to aluminum friction stir welding. Trans. Nonferrous Metals Soc. China 27(1), 36–54 (2017)

    Article  Google Scholar 

  22. Z. Shen, Y. Chen, M. Haghshenas, T. Nguyen, J. Galloway, A.P. Gerlich, Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding. Mater. Charact. 104, 1–9 (2015)

    Article  Google Scholar 

  23. K. Srinivas, R. Saranarayanan, A.K. Lakshminarayanan, N. Srinivasan, B. Venkatraman, Zone wise properties of friction stir welded copper–stainless steel joints using Digital Image Correlation. Appl. Mech. Mater. 787, 485–489 (2015)

    Article  Google Scholar 

  24. V. Shokri, A. Sadeghi, M.H. Sadeghi, Effect of friction stir welding parameters on microstructure and mechanical properties of DSS–Cu joints. Mater. Sci. Eng. A 693, 111–120 (2017)

    Article  Google Scholar 

  25. A.J. Ramirez, D.M. Benati, H.C. Fals, Effect of tool offset on dissimilar Cu-AISI 316 stainless steel friction stir welding, in The twenty-first international offshore and polar engineering conference 2011. International Society of Offshore and Polar Engineers

  26. Y. Imani, M.K. Besharati, M. Guillot, Improving friction stir welding between copper and 304L stainless steel. Adv. Mater. Res. (2011). https://doi.org/10.4028/www.scientific.net/AMR.409.263

    Google Scholar 

  27. M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints. J. Mech. Sci. Technol. 31(3), 1135–1142 (2017)

    Article  Google Scholar 

  28. H. Zhang, L. Chen, J. Sun, W. Wang, Q. Wang, An investigation of cobalt phase structure in WC-Co cemented carbides before and after deep cryogenic treatment. Int. J. Refract. Met. Hard Mater (2015). https://doi.org/10.1016/j.ijrmhm.2015.04.007

    Google Scholar 

  29. E.T. Akinlabi, Effect of shoulder size on weld properties of dissimilar metal friction stir welds. J. Mater. Eng. Perform. 21(7), 1514–1519 (2012)

    Article  Google Scholar 

  30. K.P. Mehta, Advanced joining and welding techniques: an overview (Chapter 5), in Advanced manufacturing technologies, ed. by K. Gupta (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-56099-1_5

    Google Scholar 

  31. K.P. Mehta, V.J. Badheka, Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. J. Mater. Process. Technol. 239, 336–345 (2017)

    Article  Google Scholar 

  32. G. Joshi. Design and development of friction stir welding technology for 3 mm thick Cu to SS joint. M. Tech thesis-Ganpat University (2012)

  33. P. Carlone, A. Astarita, G.S. Palazzo, V. Paradiso, A. Squillace, Microstructural aspects in Al–Cu dissimilar joining by FSW. Int. J. Adv. Manuf. Technol. 79(5–8), 1109–1116 (2015)

    Article  Google Scholar 

  34. D. Yi, T. Onuma, S. Mironov, Y.S. Sato, H. Kokawa, Evaluation of heat input during friction stir welding of aluminium alloys. Sci. Technol. Weld. Join. 22(1), 41–46 (2017)

    Article  Google Scholar 

  35. Mehta, K. P. Investigation of friction stir welding between dissimilar materials copper to aluminum (doctoral thesis) (2017). http://hdl.handle.net/10603/149341. Accessed 1 June 2018

  36. K.P. Mehta, A review on friction-based joining of dissimilar aluminum–steel joints. J. Mater. Res. 34(1), 78–96 (2019). https://doi.org/10.1557/jmr.2018.332

    Article  Google Scholar 

  37. I. Magnabosco, P. Ferro, F. Bonollo, L. Arnberg, An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel. Mater. Sci. Eng. A 424(1), 163–173 (2006)

    Article  Google Scholar 

  38. S.G. Shiri, M. Nazarzadeh, M. Sharifitabar, M.S. Afarani, Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials. Trans. Nonferrous Metals Soc. China 22(12), 2937–2942 (2012)

    Article  Google Scholar 

  39. S.V. Kuryntsev, A.E. Morushkin, A.K. Gilmutdinov, Fiber laser welding of austenitic steel and commercially pure copper butt joint. Opt. Lasers Eng. 90, 101–109 (2017)

    Article  Google Scholar 

  40. R.T. Lee, C.T. Liu, Y.C. Chiou, H.L. Chen, Effect of nickel coating on the shear strength of FSW lap joint between Ni–Cu alloy and steel. J. Mater. Process. Technol. 213(1), 69–74 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Mr. Rajesh Nair for helping to improve the language of this manuscript. Authors are very much thankful to Dr. Kush Mehta for his significant help in paper writing and results interpretation. The authors are also thankful to Board for Research in Fusion Science and Technology (BRFST), Institute for Plasma Research (IPR), Gandhinagar for sponsoring the research project through project number NFP/MAT/A10/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurang R. Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, G.R., Badheka, V.J. Studies on Tool Shoulder Diameter of Dissimilar Friction Stir Welding Copper to Stainless Steel. Metallogr. Microstruct. Anal. 8, 263–274 (2019). https://doi.org/10.1007/s13632-019-00532-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00532-5

Keywords

Navigation