Skip to main content
Log in

Linking canopy images to forest structural parameters: potential of a modeling framework

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

• Context

Remote sensing methods, and in particular very high (metric) resolution optical imagery, are essential assets to obtain forest structure data that cannot be measured from the ground because they are too difficult to measure or because the areas to sample are too large or inaccessible.

• Aim

To understand what kind of, and how precisely and accurately, information on forest structure can be inverted from RS data, we propose a modeling framework allowing to produce forest canopy images for any type of forest based on basic inventory data.

• Methods

This framework combines a simple 3D forest model named “Allostand,” based on empirically or theoretically derived diameter at breast height distributions and allometry rules, with a well-established radiative transfer model, discrete anisotropic radiative transfer.

• Results

Resulting simulated images appear of good realism for textural analysis. The potential of the approach for the development of quantitative methods to assess forest structure, dynamics, matter and energy budgets, and degradation, including in tropical contexts, is illustrated emphasizing broad-leaved natural forests.

• Conclusion

Consequently, this theoretical framework appears as a valuable component for developing inversion methods from canopy images and studying their sensitivity to structural and instrumental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asner GP, Palace M, Keller M, Pereira R, Silva JNM, Zweede JC (2002) Estimating canopy structure in an Amazon Forest from laser range finder and IKONOS satellite observations. Biotropica 34:483–492

    Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci 107:16738

    Article  PubMed  CAS  Google Scholar 

  • Barbier N, Couteron P, Proisy C, Malhi Y, Gastellu-Etchegorry JP (2010) The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Glob Ecol Biogeogr 19:72–84

    Article  Google Scholar 

  • Barbier N, Proisy C, Véga C, Sabatier D, Couteron P (2011) Bidirectional texture function of high resolution optical images of tropical forest: an approach using LiDAR hillshade simulations. Remote Sens Environ 115:167–179

    Article  Google Scholar 

  • Birnbaum P (2001) Canopy surface topography in a French Guiana forest and the folded forest theory. Plant Ecol 153:293–300

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Bruniquel-Pinel V, Gastellu-Etchegorry JP (1998) Sensitivity of texture of high resolution images of forest to biophysical and acquisition parameters. Remote Sens Environ 65:61–85

    Article  Google Scholar 

  • Coomes DA, Duncan RP, Allen RB, Truscott J (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett 6:980–989

    Article  Google Scholar 

  • Couteron P, Pelissier R, Nicolini EA, Paget D (2005) Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol 42:1121–1128

    Article  Google Scholar 

  • De Liocourt F (1898) De l’aménagement des Sapinières. Bull de la Société forestière de Franche-Comte et du Territorie de Belfort 4:396–409

    Google Scholar 

  • Diggle P (1989) Time series: a biostatistical introduction. Oxford University Press, Oxford

    Google Scholar 

  • Enquist BJ, West GB, Brown JH (2009) Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106:7046–7051

    Article  PubMed  CAS  Google Scholar 

  • Foody GM (2003) Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. Int J Remote Sens 24:4035–4046

    Article  Google Scholar 

  • Frazer GW, Wulder MA, Niemann KO (2005) Simulation and quantification of the fine-scale spatial pattern and heterogeneity of forest canopy structure: a lacunarity-based method designed for analysis of continuous canopy heights. For Ecol Manag 214:65–90

    Article  Google Scholar 

  • Gastellu-Etchegorry JP (2008) 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes. Meteorol and Atmospher Phys 102:187–207

    Article  Google Scholar 

  • Gougeon FA, Leckie DG (2006) The individual tree crown approach applied to Ikonos images of a coniferous plantation area. Photogramm Eng Remote Sens 72:1287–1297

    Google Scholar 

  • Holdridge LR (1971) Forest environments in tropical life zones: a pilot study. Pergamon, Oxford

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Husch B, Harrison JDB (1971) Planning a forest inventory. Bernan, Lanham

    Google Scholar 

  • Hyde P, Nelson R, Kimes D, Levine E (2007) Exploring LiDAR-RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sens Environ 106:28–38

    Article  Google Scholar 

  • Imhoff ML (1995) Radar backscatter and biomass saturation: ramifications for global biomass inventory. Geoscie and Remote Sens, IEEE Trans on 33:511–518

    Article  Google Scholar 

  • Kasischke ES, Christensen NL (1990) Connecting forest ecosystem and microwave backscatter models. Int J Remote Sens 11:1277–1298

    Article  Google Scholar 

  • Küchler AW (1967) Vegetation mapping. Ronald, New York

    Google Scholar 

  • Malhi Y, Roman-Cuesta RM (2008) Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sens Environ 112:2074–2087

    Article  Google Scholar 

  • Matérn B (1986) Spatial variation. Springer, Berlin

    Google Scholar 

  • Morsdorf F, Nichol C, Malthus T, Woodhouse IH (2009) Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens Environ 113:2152–2163

    Article  Google Scholar 

  • Mugglestone MA, Renshaw E (1998) Detection of geological lineations on aerial photographs using two-dimensional spectral analysis. Comput Geosci 24:771–784

    Article  Google Scholar 

  • Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Supardi NMN, Tan S, Thompson J, Valencia R, Munoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006a) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9:575–588

    Article  PubMed  Google Scholar 

  • Muller-Landau HC, Condit RS, Harms KE, Marks CO, Thomas SC, Bunyavejchewin S, Chuyong G, Co L, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Hart T, Hubbell SP, Itoh A, Kassim AR, Kenfack D, LaFrankie JV, Lagunzad D, Lee HS, Losos E, Makana JR, Ohkubo T, Samper C, Sukumar R, Sun IF, Supardi NMN, Tan S, Thomas D, Thompson J, Valencia R, Vallejo MI, Munoz GV, Yamakura T, Zimmerman JK, Dattaraja HS, Esufali S, Hall P, He FL, Hernandez C, Kiratiprayoon S, Suresh HS, Wills C, Ashton P (2006b) Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol Lett 9:589–602

    Article  PubMed  Google Scholar 

  • Pacala SW, Deutschman DH (1995) Details that matter: the spatial distribution of individual trees maintains forest ecosystem function. Oikos 74:357–365

    Article  Google Scholar 

  • Ploton P (2010) Analyzing canopy heterogeneity of the tropical forests by texture analysis of very-high resolution images—a case study in the Western Ghats of India 10, pp 1–71

  • Polidori L, Couteron P, Gond V, Proisy C, Trichon V (2004) Télédétection et caractérisation des paysages amazoniens. Rev Forest Franç 101–117

    Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Proisy C, Mougin E, Fromard F, Karam MA (2000) Interpretation of polarimetric radar signatures of mangrove forests. Remote Sens Environ 71:56–66

    Article  Google Scholar 

  • Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392

    Article  Google Scholar 

  • Proisy C, Barbier N, Gastellu-Etchegorry JP, Guéroult M, Grau E, Pélissier R, Couteron P (2011) Biomass prediction in tropical forest: the canopy grain approach. In: Temilola D, Fatoyindo E (eds) Remote sensing of biomass: principles and applications/book 1. Intech, Morn Hill (in press)

  • Purves DW, Lichstein JW, Strigul N, Pacala SW (2008) Predicting and understanding forest dynamics using a simple tractable model. Proc Natl Acad Sci 105:17018

    Article  PubMed  CAS  Google Scholar 

  • Richards PW (1995) The tropical rain forest: an ecological study. Cambridge University Press, Cambridge

    Google Scholar 

  • Rubio J, Grau E, Sun G, Gastellu Etchgorry J, Ranson KJ (2009) Lidar modeling with the 3D DART model. Page 0330 AGU fall meeting abstracts

  • Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res 115

  • Vincent G, Harja D (2008) Exploring ecological significance of tree crown plasticity through three-dimensional modelling. Ann Bot 101:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106:7040–7045

    Article  PubMed  CAS  Google Scholar 

  • Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry JP, Gobron N, Kuusk A, Lavergne T (2007) Third Radiation Transfer Model Intercomparison (RAMI) exercise: documenting progress in canopy reflectance models. J Geophys Res 112:D09111

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank one anonymous reviewer for his careful revision.

Funding

This work has been supported by the Centre National d’Etudes Spatiales for the preparation of the “Pleiades” mission, by INRA through a post-doctoral grant, and by a Marie Curie IEF FP7 grant of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Barbier.

Additional information

Handling Editor: Gérard Nepveu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbier, N., Couteron, P., Gastelly-Etchegorry, JP. et al. Linking canopy images to forest structural parameters: potential of a modeling framework. Annals of Forest Science 69, 305–311 (2012). https://doi.org/10.1007/s13595-011-0116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-011-0116-9

Keywords

Navigation