Skip to main content

Advertisement

Log in

Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Plant fertilization is a major issue in the context of increasing population and food risk, higher cost of fertilizers, and low target efficiency of traditional mineral fertilization practices. Alternatively, application of microbial inoculants to the soil can enhance the uptake of nutrients by plants and increase the efficiency of mineral fertilizers and manures. Encapsulation methods involve covering and protecting the microorganisms. Encapsulation of bacterial cells has been challenged and used mainly in the agricultural industry using processes, such as spray drying, interfacial polymerization, or cross-linking. Here, we review techniques for microbial inoculants and their benefits for sustainable agriculture. Techniques include fluidized bed, extrusion, molecular inclusion, coacervation, liposomes, ionic or inverse gelation, and oil-entrapped emulsion. Major topics discussed are formulation of microbial inoculants, conventional inoculants, bioencapsulation materials, bioencapsulation techniques, and future trends. We found that (1) conventional inoculant does not provide adequate protection for microorganisms. (2) Bioencapsulation improves the protection and controlled release of bacteria. (3) Sodium alginate is one of the most used products for the bioencapsulation of microorganisms. (4) The bioencapsulation of microbial inoculants is performed with the incorporation of an active ingredient into a matrix followed by a mechanical operation, and finally stabilization by a chemical or physical–chemical process. (5) Spray-drying process works on a continuous basis, low operating cost, and high quality of capsules in good yield, although the high temperature used in the process is not very appropriate for encapsulating non-spore-forming bacteria. 6) Fluid-bed process is a promising encapsulation technique for large-scale production in agricultural industry. (7) Ionic gelation is currently the most adequate method found to encapsulate bacteria. (8) Some advantages and drawbacks are found for each technique; therefore, the selection of suitable bioencapsulation method will depend on bacteria strain, cost, processing conditions, and handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abang S, Chan ES, Poncelet D (2012) Effects of process variables on the encapsulation of oil in Ca-alginate capsules using an inverse gelation technique. J Microencapsul 29:417–428

    CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    CAS  Google Scholar 

  • Amiet-Charpentier C, Gadille P, Digat B, Benoit JP (1998a) Microencapsulation of rhizobacteria by spray-drying: formulation and survival studies. J Microencapsul 15:639–659

    CAS  Google Scholar 

  • Amiet-Charpentier C, Benoit JP, Gadille P, Richard J (1998b) Preparation of rhizobacteria-containing polymer microparticles using a complex coacervation method. Colloid Surface 144:179–190

    CAS  Google Scholar 

  • Amiet-Charpentier C, Gadille P, Benoit JP (1999) Rhizobacteria microencapsulation: properties of microparticles obtained by spray-drying. J Microencapsul 16:215–229

    CAS  Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098

    CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiolog 36:591–608

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1994) Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Appl Environ Microbiol 60:2120–2131

    CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262–266

    CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bashan Y, Salazar B, Puente ME (2009) Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biol Fertile Soils 45:655–662

    Google Scholar 

  • Bextine BR, Thorvilson HG (2002) Field applications of bait-formulated Beauveria bassiana alginate pellets for biological control of the red imported fire ant (Hymenoptera: Formicidae). Environ Entomol 31:746–752

    CAS  Google Scholar 

  • Bungenberg de Jong HG (1949) Morphology of coacervates. In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 335–432

    Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    CAS  Google Scholar 

  • Champagne CP, Gaudy C, Poncelet D, Neufeld RJ (1992) Lactococcus lactis release from calcium alginate beads. Appl Environ Microbiol 58:1429–1434

    CAS  Google Scholar 

  • Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93(6):2669–2680

    CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36:1275–1288

    CAS  Google Scholar 

  • Denton MD, Pearce DJ, Ballard RA, Hannah MC, Mutch LA, Norng S et al (2009) A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biol Biochem 41:2508–2516

    CAS  Google Scholar 

  • Diaz-Zorita M, Fernandez-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–781

    CAS  Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • Fallik E, Okon Y (1996) Inoculants of Azospirillum brasilense: biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol Biochem 28:123–126

    CAS  Google Scholar 

  • Fett WF, Osman SF, Fishman ML, Siebles TS (1986) Alginate production by plant-pathogenic pseudomonads. Appl Environ Microbiol 52:466–473

    CAS  Google Scholar 

  • Fett WF, Osman SF, Dunn MF (1989) Characterization of exopolysaccharides produced by plant-associated fluorescent pseudomonads. Appl Environ Microbiol 55:579–583

    CAS  Google Scholar 

  • Flores RJ, Wall MD, Carnahan DW, Orofino TA (1992) An investigation of internal phase losses during the microencapsulation of fragrances. J Microencapsul 3:287–307

    Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: Biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MA, Fitzgerald GF, Collins JK et al (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    CAS  Google Scholar 

  • Gobbeti M, Corsetti A, Smacchi E, Zocchetti A, De Angleis M (1997) Production of crescenza cheese by incorporation of bifidobacteria. J Dairy Sci 81:37–47

    Google Scholar 

  • Godshall MA (1997) How carbohydrates influence food flavor. J Food Tech 51:63–67

    CAS  Google Scholar 

  • Golowczyc MA, Silva J, Abraham AG, De Antoni GL, Teixeira P (2010) Preservation of probiotic strains isolated from kefir by spray drying. Lett Appl Microbiol 50:7–12

    CAS  Google Scholar 

  • Goss GR, Baldwin HM, Riepl RG (2003) Clays as biological carriers. In: Downer RA, Mueninghoff JC, Volgas GC (eds) Pesticide formulations and delivery systems: meeting the challenges of the current crop protection industry. American Society for Testing and Materials, Dallas, pp 24–34

    Google Scholar 

  • Goubet I, Le Quere JL, Voilley A (1998) Retention of aroma compounds by carbohydrate: influence of their physicochemical characteristics and of their physical state. J Agr Food Chem 48:1981–1990

    Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Tech 15:330–347

    CAS  Google Scholar 

  • Groboillot AF, Champagne CP, Darling GD, Poncelet D, Neufeld RJ (1993) Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis. Biotechnol Bioeng 42:1157–1163

    CAS  Google Scholar 

  • Groboillot A, Boadi DK, Poncelet D, Neufeld RJ (1994) Immobilization of cells for application in the food industry. Crit Rev Biotechnol 14:75–107

    CAS  Google Scholar 

  • Haggag WM, Singer S (2012) Development and production of formulations of PGPR cells for control of leather fruit rot disease of strawberry. American Journal of Scientific Research 67:16–22

    Google Scholar 

  • Heijnen CE, Van Veen JA (1991) A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiol Ecol 85:73–80

    Google Scholar 

  • Heijnen CE, Hok-A-Hin CH, Van Veen JA (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538

    Google Scholar 

  • Heinzen C (2002) Microencapsulation solve time dependent problems for foodmarkers. Eur Food Drink Rev 3:27–30

    Google Scholar 

  • Herridge DF, Roughley RJ (1974) Survival of some slow-growing Rhizobium on inoculated legume seed. Plant Soil 40:441–444

    Google Scholar 

  • Hickman MV (1999) Controlled-release pesticide formulations from cornstarch. In: Scher HB (ed) Controlled-release delivery systems for pesticides. Marcel Dekker, New York, pp 153–171

    Google Scholar 

  • Huang L, Taylor H, Gerber M, Orndorff PE, Horton JR, Tonelli A (1999) Formation of antibiotic, biodegradable, bioabsorbable polymers by processing with neomycin sulphate and its inclusion compound with β-cyclodextrin. J Appl Polym Sci 74:937–947

    CAS  Google Scholar 

  • Hyndman CL, Groboillot A, Poncelet D, Champagne C, Neufeld RJ (1993) Microencapsulation of Lactococcus lactis with cross-link gelatin membranes. J Chemical Technol Biotechnol 56:259–263

    CAS  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    CAS  Google Scholar 

  • Jacquot M, Pernetti M (2003) Spray coating and drying processes. In: Nedovic V, Willaert R (eds) Cell immobilization biotechnology. Kluwer, Dordrecht, pp 343–356

    Google Scholar 

  • Jankowski T, Zielinska M, Wysakowska A (1997) Encapsulation of lactic acid bacteria with alginate/starch capsules. Biotechnol Tech 11:31–34

    CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Prévost D (2010) Development of emulsion from rhizobial fermented starch industry wastewater for application as Medicago sativa seed coat. Eng Life Sci 10:248–256

    CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    CAS  Google Scholar 

  • Kebary KMK, Hussein SA, Basawi RM (1998) Improving viability of bifidobacteria and their effect on frozen milk. Egyptian J Dairy Sci 26:319–337

    Google Scholar 

  • Khalil AH, Mansour EH (1998) Alginate encapsulated bifidobacteria survival in mayonnaise. J Food Sci 63:702–705

    CAS  Google Scholar 

  • Kim KI, Baek YJ, Yoon YH (1996) Effects of rehydration media and immobilisation in calcium-alginate on the survival of Lactobacillus casei and Bifidobacterium bifidum. Korean J Dairy Sci 18:193–198

    Google Scholar 

  • Kim IY, Pusey PL, Zhao Y, Korban SS, Choi H, Kim KK (2012) Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J Control Release 161:09–15

    Google Scholar 

  • Kloepper J, Schroth MN (1981) Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 71:590–592

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    CAS  Google Scholar 

  • Korus J (2001) Microencapsulation of flavours in starch matrix by coacervation method. Pol J Food Nutr Sci 51:17–23

    Google Scholar 

  • Koyama K, Seki M (2004) Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol. J Biosci Bioeng 98:114–121

    CAS  Google Scholar 

  • Lacroix C, Paquin C, Arnaud JP (1990) Batch fermentation with entrapped growing cells of Lactobacillus casei. Optimisation of the rheological properties of the entrapment gel matrix. Appl Microbiol Biotechnol 32:403–408

    CAS  Google Scholar 

  • Larena I, Melgarejo P, Cal AD (2003) Drying of Conidia of Penicillum oxalicum, a biological control agent against Fusarium wilt of tomato. J Phytopathol 151:600–606

    Google Scholar 

  • Larisch BC, Poncelet D, Champagne CP, Neufeld RJ (1994) Microencapsulation of Lactococcus lactis subsp. cremoris. J Microencapsul 11:189–195

    CAS  Google Scholar 

  • Lemanceau P (1992) Effets benefiques de rhizobacteries sur les plantes: exemple des Pseudomonas spp fluorescents. Agronomie 12:413–437

    Google Scholar 

  • Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    CAS  Google Scholar 

  • Lim F (1983) Microencapsules containing viable tissue cells. US Patent 4391909. July 5

  • López MD, Maudhuit A, Pascual-Villalobos MJ, Poncelet D (2012) Development of formulations to improve the controlled-release of linalool to be applied as an insecticide. J Agric Food Chem 60:1187–1192

    Google Scholar 

  • Lugtenberg BJJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Tech 41:1–21

    CAS  Google Scholar 

  • Marra LM, Fonseca Sousa Soares CR, Oliveira SM, Avelar Ferreira PA, Soares BL, Fraguas CR et al (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    CAS  Google Scholar 

  • Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producing lactic acid bacteria. J Food Prot 62:773–777

    CAS  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of microorganisms by drying. A review. J Microbiol Meth 66:183–193

    CAS  Google Scholar 

  • Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) Microchannel emulsification using gelatine and surfactant-free coacervate microencapsulation. J Colloid Interf Sci 278:198–205

    CAS  Google Scholar 

  • Nunez C, Leon R, Guzman J, Espin G, Soberon-Chavez G (2000) Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 182:6550–6556

    CAS  Google Scholar 

  • Nussinovitch A (2010) Polymer macro and micro-gel beads: fundamentals and applications. Springer, Berlin, 303 pp

    Google Scholar 

  • O’Riordan K, Andrews D, Buckle K, Conway P (2001a) Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J Appl Microbiol 91:1059–1066

    Google Scholar 

  • O’Riordan K, Muljadi N, Conway P (2001b) Characterization of factors affecting attachment of Bifidobacterium species to amylomaize starch granules. J Appl Microbiol 90:749–754

    Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S et al (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    CAS  Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    CAS  Google Scholar 

  • Picot A, Lacroix C (2003) Production of multiphase water-insoluble microcapsules for cell microencapsulation using an emulsification/spray-drying technology. J Food Sci 68:2693–2700

    CAS  Google Scholar 

  • Prata AS, Maudhuit A, Boillereaux L, Poncelet D (2012) Development of a control system to anticipate agglomeration in fluidised bed coating. Powder Technol 224:168–174

    CAS  Google Scholar 

  • Rao AV, Shiwnarain N, Maharaj I (1989) Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can Inst Food Sci Technol J 22:345–349

    Google Scholar 

  • Reineccius G (1988) Spray-drying of food flavours. In: Risch SJ, Reineccius GA (eds) Flavor encapsulation. American Chemical Society, Washington, pp 55–66

    Google Scholar 

  • Reineccius G (1991) Off-flavors in foods. Crit Rev Food Sci Nutr 29:381–402

    CAS  Google Scholar 

  • Reineccius TA, Reineccius GA, Peppard TL (2002) Encapsulation of flavors using cyclodextrins: comparison of flavor retention in alpha, beta and gamma types. J Food Sci 67:3271–3279

    CAS  Google Scholar 

  • Rekha PD, Lai WA, Arun AB, Young CC (2007) Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour Technol 98:447–451

    CAS  Google Scholar 

  • Risch SJ (1995) Encapsulation: overview of uses and techiniques. In: Rish SJ, Reineccius GA (eds) Encapsulation and Controlled Release of Food Ingredient. American Chemical Society, Washington, pp 2–7

    Google Scholar 

  • Rivera-Cruz MC, Trujillo-Narcía A, Córdova-Ballona G, Kohler J, Caravaca F, Roldán A (2008) Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095

    CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    CAS  Google Scholar 

  • Rose MT, Deaker R, Potard S, Thi Tran CK, Vu NT, Kennedy IR (2011) The survival of plant growth promoting microorganisms in peat inoculant as measured by selective plate counting and enzyme-linked immunoassay. World J Microbiol Biotechnol 27:1649–1659

    CAS  Google Scholar 

  • Roy D, Goulet J, Le Duy A (1987) Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J Dairy Sci 70:506–513

    CAS  Google Scholar 

  • Russo A, Basaglia M, Tola E, Casella S (2001) Survival, root colonisation and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. J Ind Microbiol Biotechnol 27:337–342

    CAS  Google Scholar 

  • Sabaratnam S, Traquair J (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    CAS  Google Scholar 

  • Sasaki E, Kuruyama F, Ida J, Matsuyama T, Yamamoto H (2008) Preparation of microcapsules by electrostatic atomization. J Electrostat 66:312–318

    CAS  Google Scholar 

  • Schalmeus W (1995) Centrifugal extrusion encapsulation. In: Rish SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredient. American Chemical Society, Washington, pp 96–103

    Google Scholar 

  • Schoebitz M, Ribaudo C, Pardo M, Cantore M, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774

    Google Scholar 

  • Schoebitz M, Simonin H, Poncelet D (2012) Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J Microencapsul 29:532–538

    CAS  Google Scholar 

  • Sheu TY, Marshall RT (1993) Microentrapment of Lactobacilli en calcium alginate gels. J Food Sci 58:557–561

    Google Scholar 

  • Shieh WJ, Hedges AR (1996) Properties and applications of cyclodextrins. J Macromol Sci 33:673–683

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. In: Herridge D (ed) ACIAR Proceedings.

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Google Scholar 

  • Smith RS (1997) New inoculant technology to meet changing legume management. In: Elmerich AKC, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, pp 621–622

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  Google Scholar 

  • Sparks RE, Jacobs IC (1999) Selection of coating and microencapsulation processes. In: Scher HB (ed) Controlled-release delivery system for pesticides. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crop Res 65:249–258

    Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    CAS  Google Scholar 

  • Tal Y, van Rijn J, Nussinovitch A (1999) Improvement of mechanical and biological properties of freeze-dried denitrifying alginate beads by using starch as a filler and carbon source. Appl Microbiol Biotechnol 51:773–779

    CAS  Google Scholar 

  • Temprano FJ, Albareda M, Camacho M, Daza A, Santamaria C, Rodriguez-Navarro DN (2002) Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol 5:81–86

    CAS  Google Scholar 

  • Trejo A, de-Bashan LE, Hartmann A, Hernandez JP, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Bot 75:65–73

    Google Scholar 

  • Trevors JT, van Elsas JD, Lee H, van Overbeek LS (1992) Use of alginate and other carriers for encpasulation of microbial cells for use in soil. Microb Releases 1:61–69

    Google Scholar 

  • Trivedi P, Pandey A (2008) Recovery of plant growth-promoting rhizobacteria from sodium alginate beads after 3 years following storage at 4 degrees C. J Ind Microbiol Biotechnol 35:205–209

    CAS  Google Scholar 

  • Uhlemann J, Mörl L (2000) Wirbelschicht-Sprühgranulation. Springer, New York

    Google Scholar 

  • van Elsas J, Trevors J, Jain D, Wolters A, Heijnen C, van Overbeek L (1992) Survival of, and root colonization by, alginate-encapsulated Pseudomonas-fluorescens cells following introduction into soil. Biol Fert soils 14:14–22

    Google Scholar 

  • Vassilev N, Toro M, Vassileva M, Azcon R, Barea JM (1997) Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Bioresour Technol 61:29–32

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil–plant system. J Biotechnol 91:237–242

    CAS  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassilev N (1999) Effect of encapsulated cells of Enterobacter sp on plant growth and phosphate uptake. Bioresour Technol 67:229–232

    CAS  Google Scholar 

  • Wampler DJ (1992) Flavor encapsulation: a method for providing maximum stability for dry flavors systems. Cereal foods World 37:817–820

    CAS  Google Scholar 

  • Wang X, Brown IL, Evans AJ, Conway PL (1999) The protective effects of high amylose maize (amylomaize) starch granules on the survival of Bifidobacterium spp. in the mouse intestinal tract. J Appl Microbiol 87:631–639

    CAS  Google Scholar 

  • Watanabe Y, Fang X, Minemoto Y, Adachi S, Matsuno R (2002) Suppressive effect of saturated acyl l-ascorbate on the oxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray-drying. J Agric Food Chem 50:3984–3987

    CAS  Google Scholar 

  • Wu Z, Zhao Y, Kaleem I, Li C (2011) Preparation of calcium–alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eur J Soil Biol 47:152–159

    CAS  Google Scholar 

  • Wu Z, Guo L, Qin S, Li C (2012) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol 39:317–327

    CAS  Google Scholar 

  • Yabur R, Bashan Y, Hernández-Carmona G (2007) Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J Appl Phycol 19:43–53

    CAS  Google Scholar 

  • Yeo Y, Back N, Park K (2001) Microencapsulation methods for delivery of protein drugs. Biotechnol Bioproc E 6:213–230

    CAS  Google Scholar 

  • Young CC, Rekha PD, Lai WA, Arun AB (2006) Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol Bioeng 95:76–83

    CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, MS, would like to thank the National Commission for Scientific and Technological Research of Chile (CONICYT) for the postdoctoral fellowship and Plan Nacional Spain (Project number AGL2009-12530-C02-01).

Declaration of interest

The authors inform that there are no conflicts of interest and the authors are the only ones responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Schoebitz.

About this article

Cite this article

Schoebitz, M., López, M.D. & Roldán, A. Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron. Sustain. Dev. 33, 751–765 (2013). https://doi.org/10.1007/s13593-013-0142-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0142-0

Keywords

Navigation