Skip to main content

Advertisement

Log in

Development of crop cultivars by honeycomb breeding

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The ability of agriculture to adapt to environmental changes and to address main issues of food quality and environment protection is a fundamental factor in achieving sustainability. Low yield capacity of contemporary sustainable farming systems, however, is a major obstacle to future growth of sustainable agriculture. In addition, increasing pressure is placed for higher food supply due to the projected population increase. To overcome these barriers and stimulate the wide adoption of sustainable agriculture, ample supply of cultivars that satisfy the requirements for sustainability without compromising productivity is essential. Otherwise, the viability of sustainable agriculture is unsound. Moreover, plant breeding has to be a non-stop process supporting agriculture because of the ongoing climate changes. The studies of the effects of competition on crop yield and selection efficiency unravelled important findings for plant breeders. Firstly, the uppermost cultivar type is the mono-genotypic and particularly the highest evolutionary grade of ‘pure line’. Secondly, single plant selection is effective only when it is realized in the absence of competition for growth resources. Honeycomb methodology, by considering as a major principle the application of selection in the absence of competition, counteracts the disturbing effects of competition on selection effectiveness. Furthermore, the honeycomb experimental designs cope with the confounding implications of soil heterogeneity. These two findings help breeders to consider the individual plant as an evaluating and selection unit. As a consequence, the development of pure line cultivars that fully meet the needs of a sustainable agriculture is possible. Most importantly, honeycomb breeding exploits effectively not only favourable but marginal environments as well through the development of density-neutral cultivars. Marginal environments are exploited optimally when lower plant populations are used. It is of essence to realize that without the ability of exploiting successfully marginal environments which represent the majority of the production environments globally, sustainability in agriculture becomes problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham EM, Fasoulas AC (2001) Comparative efficiency of three selection methods in Dactylis glomerata L. and Agropyron cristatum L. J Agr Sci 137:173–178. doi:10.1017/S0021859601001265

    Google Scholar 

  • Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agr Ecosyst Environ 93:1–24. doi:10.1016/S0167-8809(02)00085-3

    Article  Google Scholar 

  • Atuahene-Amankwa G, Beatie AD, Michaels TE, Falk DE (2004) Cropping system evaluation and selection of common bean genotypes for a maize/bean intercrop. Afr Crop Sci J 12:105–113

    Google Scholar 

  • Batzios DP, Roupakias DG, Kechagia U, Galanopoulou-Sendouca S (2001) Comparative efficiency of honeycomb and conventional pedigree methods of selection for yield and fiber quality in cotton (Gossypium spp.). Euphytica 122:203–211. doi:10.1023/A:1012718715149

    Article  Google Scholar 

  • Blackman A (2000) Obstacles to a doubly green revolution. Discussion paper 00-48. Resources for the future, Washington, DC. http://www.rff.org/RFF/Documents/RFF-DP-00-48.pdf

  • Caballero R, Goicoechea EL, Hernaiz PJ (1995) Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of common vetch. Field Crops Res 41:135–140. doi:10.1016/0378-4290(94)00114-R

    Article  Google Scholar 

  • Christakis PA, Fasoulas AC (2002) The effects of the genotype by environmental interaction on the fixation of heterosis in tomato. J Agric Sci 139:55–60. doi:10.1017/S0021859602002198

    Article  Google Scholar 

  • Crow JF (2000) The rise and fall of overdominance. Plant Breed Rev 17:225–257

    Google Scholar 

  • Cullis CA (2005) Mechanisms and control of rapid genomic change in flax. Ann Bot 95:201–206. doi:10.1093/aob/mci013

    Article  PubMed  CAS  Google Scholar 

  • Davis JHC, Beuningen L, Ortiz MV, Pino C (1984) Effect of growth habit of beans on tolerance to competition from maize when intercropped. Crop Sci 24:751–755. doi:10.2135/cropsci1984.0011183X002400040029x

    Article  Google Scholar 

  • Daynard TB, Muldoon JF (1983) Plant-to-plant variability of maize plants grown at different densities. Can J Plant Sci 63:45–59. doi:10.4141/cjps83-005

    Article  Google Scholar 

  • Douches DS, Maas D, Jastrzebski K, Chase RW (1996) Assessment of potato breeding progress in the USA over the last century. Crop Sci 36:1544–1552. doi:10.2135/cropsci1996.0011183X003600060024x

    Article  Google Scholar 

  • Duvick DN (1992) Genetic contributions to advances in yield of U.S. maize. Maydica 37:69–79

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145. doi:10.1016/S0065-2113(05)86002-X

    Article  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman Scientific and Terminal. Wiley, New York

    Google Scholar 

  • Fasoula DA (1990) Correlations between auto-, allo- and nil-competition and their implications in plant breeding. Euphytica 50:57–62. doi:10.1007/BF00023161

    Article  Google Scholar 

  • Fasoula VA (2008) Two novel whole-plant field phenotyping equations maximize selection efficiency. In: Prohens J, Badenes ML (eds) Modern variety breeding for present and future needs. Proceedings of the 18th Eucarpia General Congress, 9–12 September 2008, Valencia, Spain, pp 361–365

  • Fasoula VA (2009) Selection of high yielding plants belonging to entries of high homeostasis maximizes efficiency in maize breeding. XXI International Conference in Maize and Sorgum Breeding in the Genomics Era, Bergamo, Italy, 21–24 June 2009, p 28

  • Fasoula VA, Boerma HR (2005) Divergent selection at ultra-low plant density for seed protein and oil content within soybean cultivars. Field Crops Res 91:217–229. doi:10.1016/j.fcr.2004.07.018

    Article  Google Scholar 

  • Fasoula VA, Boerma HR (2007) Intra-cultivar variation for seed weight and other agronomic traits within three elite soybean cultivars. Crop Sci 47:367–373. doi:10.2135/cropsci2005.09.0334

    Article  Google Scholar 

  • Fasoula DA, Fasoula VA (1997a) Competitive ability and plant breeding. Plant Breed Rev 14:89–138

    Google Scholar 

  • Fasoula DA, Fasoula VA (1997b) Gene action and plant breeding. Plant Breed Rev 15:315–374

    Google Scholar 

  • Fasoula VA, Fasoula DA (2000) Honeycomb breeding: principles and applications. Plant Breed Rev 18:177–250

    CAS  Google Scholar 

  • Fasoula VA, Fasoula DA (2002) Principles underlying genetic improvement for high and stable crop yield potential. Field Crop Res 75:191–209. doi:10.1016/S0378-4290(02)00026-6

    Article  Google Scholar 

  • Fasoula DA, Fasoula VA (2005) Bridging the productivity gap between maize inbreds and hybrids by replacing gene and genome dichotomization with gene and genome integration. Maydica 50:49–61

    Google Scholar 

  • Fasoula VA, Tollenaar M (2005) The impact of plant population density on crop yield and response to selection in maize. Maydica 50:39–48

    Google Scholar 

  • Fasoula VA, Boerma HR, Yates JL, Walker DR, Finnerty SL, Rowan GB, Wood ED (2007a) Registration of five soybean germplasm lines selected within the cultivar ‘Benning’ differing in seed and agronomic traits. J Plant Registrations 1:156–157. doi:10.3198/jpr2006.03.0198crg

    Article  Google Scholar 

  • Fasoula VA, Boerma HR, Yates JL, Walker DR, Finnerty SL, Rowan GB, Wood ED (2007b) Registration of seven soybean germplasm lines selected within the cultivar ‘Cook’ differing in seed and agronomic traits. J Plant Registrations 1:158–159. doi:10.3198/jpr2006.03.0199crg

    Article  Google Scholar 

  • Fasoula VA, Boerma HR, Yates JL, Walker DR, Finnerty SL, Rowan GB, Wood ED (2007c) Registration of six soybean germplasm lines selected within the cultivar ‘Haskell’ differing in seed and agronomic traits. J Plant Registrations 1:160–161. doi:10.3198/jpr2006.03.0200crg

    Article  Google Scholar 

  • Fasoulas AC (1988) The honeycomb methodology of plant breeding. A.C. Fasoulas. P.O. Box 1555, GR-54006, Thessaloniki 17, Greece

  • Fasoulas AC (1993) Principles of crop breeding. A.C. Fasoulas. P.O. Box 1555, GR-54006, Thessaloniki 17, Greece

  • Fasoulas AC (2000) Building up resistance to Verticillium wilt in cotton through honeycomb breeding. In: Gillham FM (ed) New frontiers in cotton research. Proceedings of the 2nd World Cotton Research Conference. 6–12 September 1998, Athens, Greece, pp 120–124

  • Fasoulas AC, Fasoula VA (1995) Honeycomb selection designs. Plant Breed Rev 13:87–139

    Google Scholar 

  • Fehr WR (1987) Principles of cultivar development, vol 1. Macmillan, New York

    Google Scholar 

  • Gafsi M, Legagneux B, Nguyen G, Robin P (2006) Towards sustainable farming systems: effectiveness and deficiency of the French procedure of sustainable agriculture. Agr Syst 90:226–242. doi:10.1016/j.agsy.2006.01.002

    Article  Google Scholar 

  • Gebeyehu S, Simane B, Kirkby R (2006) Genotype × cropping system interaction in climbing beans (Phaseoulus vulgaris L.) grown as sole crop and in association with maize (Zea mays L.). Eur J Agron 24:396–403. doi:10.1016/j.eja.2006.01.005

    Article  Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292. doi:10.2135/cropsci2006.03.0169gas

    Article  Google Scholar 

  • Gepts P, Hancock J (2006) The future of plant breeding. Crop Sci 46:1630–1634. doi:10.2135/cropsci2005-12-0497op

    Article  Google Scholar 

  • Gowing JM, Palmer M (2008) Sustainable agricultural development in sub-Saharan Africa: the case for a paradigm shift in land husbandry. Soil Use Manage 24:92–99. doi:10.1111/j.1475-2743.2007.00137.x

    Article  Google Scholar 

  • Gravois KA, Helms RS (1996) Seeding rate effects on rough rice yield, head rice, and total milled rice. Agron J 88:82–84. doi:10.2134/agronj1996.00021962008800010017x

    Article  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555. doi:10.1126/science.1106049

    Article  PubMed  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Jenssen ES (2001) Evaluating pea and barley cultivars for complementary in intercropping at different levels of soil N availability. Field Crops Res 72:185–196. doi:10.1016/S0378-4290(01)00176-9

    Article  Google Scholar 

  • Holland JB, Bingham ET (1994) Genetic improvement for yield and fertility of alfalfa cultivars representing different eras of breeding. Crop Sci 34:953–957. doi:10.2135/cropsci1994.0011183X003400040022x

    Article  Google Scholar 

  • Ipsilantis CG, Vafias BN (2005) Plant density effects on grain yield per plant in maize: breeding implications. Asian J Plant Sci 4:31–39. doi:10.3923/ajps.2005.31.39

    Article  Google Scholar 

  • Janick J (1999) Exploitation of heterosis: uniformity and stability. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA-CSSA-SSSA, Madison, pp 319–333

    Google Scholar 

  • Kimbeng CA, Bingham ET (1998) Population improvement in luceme (Medicago sativa L.): components of inbreeding depression are different in original and improved populations. Aust J Exp Agric 38:831–836. doi:10.1071/EA98112

    Article  Google Scholar 

  • Kropff MJ, Bouma J, Jones JW (2001) Systems approaches for the design of sustainable agro-systems. Agr Syst 70:369–393. doi:10.1016/S0308-521X(01)00052-X

    Article  Google Scholar 

  • Kruseman G, Ruben R, Kuyvenhoven A (1996) Analytical framework for disentangling the concept of sustainable land use. Agr Syst 50:191–207. doi:10.1016/0308-521X(94)00074-2

    Article  Google Scholar 

  • Kyriakou DT, Fasoulas AC (1985) Effects of competition and selection pressure on yield response in winter rye (Secale cereale L.). Euphytica 34:883–895. doi:10.1007/BF00035428

    Article  Google Scholar 

  • Lecomte C, Prost L, Cerf M, Meynard J-M (2010) Basis for designing a tool to evaluate new cultivars. Agron Sustain Dev 30:667–677. doi:10.1051/agro/2009042

    Article  Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, Souchére V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture. A review. Agron Sustain Dev 29:1–6. doi:10.1051/agro:2008054

    Article  Google Scholar 

  • Lithourgidis AS, Dhima KV, Vasilakoglou IB, Dordas CA, Yiakoulaki MD (2007) Sustainable production of barley and wheat by intercropping common vetch. Agron Sustain Dev 27:95–99. doi:10.1051/agro:2006033

    Article  CAS  Google Scholar 

  • Lithourgidis AS, Dordas CA, Lazaridou TB, Papadopoulos II (2008) Silage yield and protein content of common bean intercropped with corn in two row-replacements. In: Multi-functional Agriculture: Agriculture as a resource for energy and environmental preservation. Proceedings of the 10th Congress of European Society for Agronomy, 15–19 September 2008, Bologna, Italy, pp 217–218

  • Maddonni GA, Otegui ME (2006) Intra-specific competition in maize: contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crop Res 97:155–166. doi:10.1016/j.fcr.2005.09.013

    Article  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62, 10.1051/agro:2007057

    Article  Google Scholar 

  • Martin KL, Hodgen PJ, Freeman KW, Melchiori R, Arnall DB, Teal RK, Mullen RW, Desta K, Phillips SB, Solie JB, Stone ML, Caviglia O, Solari F, Bianchini A, Francis DD, Schepers JS, Hatfield JL, Raun WR (2005) Plant-to-plant variability in corn production. Agron J 97:1603–1611. doi:10.2134/agronj2005.0129

    Article  Google Scholar 

  • Missaoui AM, Fasoula VA, Bouton JH (2005) The effect of low plant density on response to selection for biomass production in switchgrass. Euphytica 142:1–12. doi:10.1007/s10681-005-0149-y

    Article  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002. doi:10.1038/ng1615

    Article  PubMed  CAS  Google Scholar 

  • Newton AC, Thomas WTB (1992) The effect of specific and non-specific resistance in mixtures of barley or genotypes on infection by mildew (Erysiphe graminis f. sp. hordei) and on yield. Euphytica 59:73–81. doi:10.1007/BF00025363

    Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, de Carvalho MAA Pinheiro, Rubiales D, Russell J, Dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269. doi:10.1051/agro/2009032

    Article  Google Scholar 

  • Ntanos DA, Roupakias DG (2001) Comparative efficiency of two breeding methods for yield and quality in rice. Crop Sci 41:345–350. doi:10.2135/cropsci2001.412345x

    Article  Google Scholar 

  • O’Leary N, Smith ME (2004) Uncovering corn adaptation to intercrop with bean by selecting for system yield in the intercrop environment. J Sust Agric 24(3):109–121. doi:10.1300/J064v24n03_08

    Article  Google Scholar 

  • Pan XY, Wang GX, Yang HM, Wei XP (2003) Effect of water deficits on within-plot variability in growth and grain yield of spring wheat in northwest China. Field Crops Res 80:195–205. doi:10.1016/S0378-4290(02)00175-2

    Article  Google Scholar 

  • Pommel B, Bonhomme R (1998) Variations in the vegetative and reproductive systems in individual plants of an heterogeneous maize crop. Eur J Agron 8:39–49. doi:10.1016/S1161-0301(97)00012-9

    Article  Google Scholar 

  • Rasmusson DC, Phillips RL (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37:303–310. doi:10.2135/cropsci1997.0011183X003700020001x

    Article  Google Scholar 

  • Reynolds MP, Acevedo E, Sayre KD, Fischer RA (1994) Yield potential in modern wheat cultivars: its association with a less competitive ideotype. Field Crops Res 37:149–160. doi:10.1016/00378-4290(94)90094-9

    Article  Google Scholar 

  • Riedell WE, Pikul JL, Abjullah Jr, Schumacher TE (2009) Crop rotation and nitrogen input effects on soil fertility, maize mineral nutrition, yield, and seed composition. Agronomy J 101:870–879. doi:10.2134/agronj2008.0186x

  • Rodriguez JM, Molnar JJ, Fazio RA, Sydnor E, Lowe MJ (2009) Barriers to adoption of sustainable agriculture practices: change agent perspectives. Renew Agr Food Syst 24:60–71. doi:10.1017/S1742170508002421

    Article  Google Scholar 

  • Santalla M, Rodiño AP, Casquero PA, de Ron AM (2001) Interactions of bush bean intercropped with field and sweet maize. Eur J Agron 15:185–196. doi:10.1016/S1161-0301(01)00104-6

    Article  Google Scholar 

  • Shaller N (1993) The concept of agricultural sustainability. Agr Ecosyst Environ 46:89–97. doi:10.1016/0167-8809(93)90016-I

    Article  Google Scholar 

  • Sharma SK, Mehta H (1988) Effect of cropping system on genetic variability and components analysis in soybean. Field Crops Res 19:103–111. doi:10.1016/0378-4290(88)90048-2

    Article  Google Scholar 

  • Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Blackwell, Ames

    Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics, a biometrical approach, 3rd edn. McGrawHill Book, New York

    Google Scholar 

  • Stuber CW, Hancock J (2008) Sustaining plant breeding—national workshop. Crop Sci 48:25–29. doi:10.2135/cropsci2007.07.0406spp

    Article  Google Scholar 

  • Taylor SL, Payton ME, Raun WR (1999) Relationships between mean yield, coefficient of variation, mean square error, and plot size in wheat field experiments. Commun Soil Sci Plant 30:1439–1447. doi:10.1080/00103629909370298

    Article  CAS  Google Scholar 

  • Tefera T, Tana T (2002) Agronomic performance of sorghum and groundnut cultivars in sole and intercrop cultivation under semiarid conditions. J Agron Crop Sci 188:212–218. doi:10.1046/j.1439-037X.2002.00553.x

    Article  Google Scholar 

  • Thomas JB, Schaalje GB, Grant MN (1994) Height, competition and yield potential in winter wheat. Euphytica 74:9–17. doi:10.1007/BF00033761

    Article  Google Scholar 

  • Tingem M, Rivington M, Bellocchi G (2009) Adaptation assessments for crop production in response to climate change in Cameroon. Agron Sustain Dev 29:247–256. doi:10.1051/agro:2008053

    Article  Google Scholar 

  • Tokatlidis IS (2000) Variation within maize lines and hybrids in the absence of competition and relation between hybrid potential yield per plant with line traits. J Agric Sci 134:391–398. doi:10.1017/S0021859699007637

    Article  Google Scholar 

  • Tokatlidis IS (2001) The effect of improved yield potential per plant on crop yield potential and optimum plant density in maize hybrids. J Agric Sci 137:299–305. doi:10.1017/S0021859601001496

    Article  Google Scholar 

  • Tokatlidis IS, Koutroubas SD (2004) A review study of the maize hybrids’ dependence on high plant populations and its implications on crop yield stability. Field Crops Res 88:103–114. doi:10.1016/j.fcr.2003.11.013

    Article  Google Scholar 

  • Tokatlidis IS, Koutsika-Sotiriou M, Fasoulas AC, Tsaftaris AS (1998) Improving maize hybrids for potential yield per plant. Maydica 43:123–129

    Google Scholar 

  • Tokatlidis IS, Koutsika-Sotiriou M, Fasoulas AC (1999) Load of deleterious genes and stability of performance in maize. Maydica 44:127–132

    Google Scholar 

  • Tokatlidis IS, Koutsika-Sotiriou M, Fasoulas AC (2001) The development of density-independent hybrids in maize. Maydica 46:21–25

    Google Scholar 

  • Tokatlidis IS, Tsialtas JT, Xynias IN, Tamoutsidis E, Irakli M (2004) Variation within a bread wheat cultivar for grain yield, protein content, carbon isotope discrimination and ash content. Field Crops Res 86:33–42. doi:10.1016/S0378-4290(03)00169-2

    Article  Google Scholar 

  • Tokatlidis IS, Koutsika-Sotiriou M, Tamoutsidis E (2005) Benefits from using maize density-independent hybrids. Maydica 50:9–17

    Google Scholar 

  • Tokatlidis IS, Xynias IN, Tsialtas JT, Papadopoulos II (2006) Single-plant selection at ultra low density to improve stability of a bread wheat cultivar. Crop Sci 46:90–97. doi:10.2135/cropsci2005.0125

    Article  Google Scholar 

  • Tokatlidis IS, Koutsika-Sotiriou M, Pessios E (2008a) Beneficial exploitation on additive genetic effects to improve yield potential per plant in maize. Cereal Res Commun 36:461–470. doi:10.1556/CRC.36.2008.3.10

    Article  Google Scholar 

  • Tokatlidis IS, Tsikrikoni C, Tsialtas JT, Lithourgidis AS, Bebeli PJ (2008b) Variability within cotton cultivars for yield, fibre quality and physiological traits. J Agric Sci 146:483–490. doi:10.1017/S0021859608007867

    Article  Google Scholar 

  • Tokatlidis IS, Has V, Mylonas I, Has I, Evgenidis G, Melidis V, Copandean A, Ninou E (2010a) Density effects on environmental variance and expected response to selection in maize (Zea mays L.). Euphytica 174:283–291. doi:10.1007/s10681-010-0160-9

    Article  Google Scholar 

  • Tokatlidis IS, Papadopoulos II, Baxevanos D, Koutita O (2010b) Genotype × environment effects on single-plant selection at low density for yield and stability in climbing dry bean populations. Crop Sci 50:775–783. doi:10.2135/cropsci2009.08.0459

    Article  Google Scholar 

  • Tokatlidis IS, Tsikrikoni C, Lithourgidis AS, Tsialtas JT, Tzantarmas C (2011) Intra-cultivar variation in cotton: response to single-plant yield selection at low density. J Agric Sci 149:197–204. doi:10.1017/S0021859610000596

    Article  Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604. doi:10.2135/cropsci1999.3961597x

    Article  Google Scholar 

  • Traka-Mavrona E (1996) Effects of competition on phenotypic expression and differentiation of five quality traits of carrot (Daucus carota L.) and their implications in breeding. Sci Hort 65:335–340. doi:10.1016/0304-4238(96)00884-9

    Article  Google Scholar 

  • Traka-Mavrona E, Georgakis D, Koutsika-Sotiriou M, Pritsa T (2000) An integrated approach of breeding and maintaining an elite cultivar of snap bean. Agron J 92:1020–1026. doi:10.2134/agronj2000.9251020x

    Article  Google Scholar 

  • Troyer AF (1996) Breeding widely adapted, popular maize hybrids. Euphytica 92:163–174. doi:10.1007/BF00022842

    Article  Google Scholar 

  • Tsay JS, Fukai S, Wilson GL (1988) Intercropping cassava with soybean cultivars of varying maturities. Field Crops Res 19:211–225. doi:10.1016/0378-4290(88)90044-5

    Article  Google Scholar 

  • Vasilakoglou I, Dhima K, Lithourgidis A, Eleftherohorinos I (2008) Competitive ability of winter cereal–common vetch intercrops against sterile oat. Exp Agr 44:509–520. doi:10.1017/S0014479708006728

    Article  Google Scholar 

  • Vlachostergios DN, Lithourgidis AS, Roupakias DG (2011) Effectiveness of single-plant selection at low density under organic environment: a field study with lentil. Crop Sci 51:41–51

    Article  Google Scholar 

  • Wilson ID, Barker GL, Edwards KJ (2003) Genotype to phenotype: a technological challenge. Ann Appl Biol 142:33–39. doi:10.1111/j.1744-7348.2003.tb00226.x

    Article  CAS  Google Scholar 

  • Xu X, Hou L, Lin H, Liu W (2006) Zoning of sustainable agricultural development in China. Agr Syst 87:38–62. doi:10.1016/j.agsy.2004.11.003

    Article  Google Scholar 

  • Yano K, Ohsawa R, Yonezawa K (2002) Cost efficiency of spatial error control in single plant selection. Breed Sci 52:177–184. doi:10.1270/jsbbs.52.177

    Article  Google Scholar 

  • Zhang J, Sun W, Li Z, Liang Y, Song A (2009) Cadmium fate and tolerance in rice cultivars. Agron Sustain Dev 29:483–490. doi:10.1051/agro/2009008

    Article  Google Scholar 

  • Zimmermann MJO, Rosielle AA, Waines JG, Foster KW (1984) A heritability and correlation study of grain yield, yield components, and harvest index of common bean in sole crop and intercrop. Field Crops Res 9:109–118. doi:10.1016/0378-4290(84)90017-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vasilia A. Fasoula or Ioannis S. Tokatlidis.

About this article

Cite this article

Fasoula, V.A., Tokatlidis, I.S. Development of crop cultivars by honeycomb breeding. Agron. Sustain. Dev. 32, 161–180 (2012). https://doi.org/10.1007/s13593-011-0034-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0034-0

Keywords

Navigation