Skip to main content

Advertisement

Log in

The molecular signalling processes underlying olfactory learning and memory formation in honeybees

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The honeybee Apis mellifera provides the opportunity to study molecular signalling processes underlying olfactory learning and memory formation in intact animals. Applying innovative techniques to monitor and manipulate signalling processes in vivo during learning led to the identification of dynamic signalling events that contribute to different facets of olfactory learning and memory formation. these techniques opened novel insights into how different training strengths change the dynamics of individual molecular signalling processes, resulting in the induction and maintenance of distinct memory phases. To date, the major contributors were believed to be the mushroom bodies, as shown in Drosophila. This in vivo work now adds the insight that processes localised in the antennal lobes also contribute considerably to the memory processes. In addition, it shows that the effects of satiation on appetitive learning and memory is most likely mediated by so far unidentified molecular signalling pathways, as the aforementioned evolutionarily conserved and well-known pathways are only partially involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

REFERENCES

  • Arnold, G., Masson, C., Budharugsa, S. (1985) Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell Tissue Res. 242, 593–605

    Article  Google Scholar 

  • Barbara, G.S., Zube, C., Rybak, J., Gauthier, M., Grünewald, B. (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee Apis mellifera. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 191, 823–836

    Article  PubMed  Google Scholar 

  • Ben-Shahar, Y. (2005) The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 191, 987–994

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar, Y., Robinson, G.E. (2001) Satiation differentially affects performance in a learning assay by nurse and forager honey bees. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 187, 891–899

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar, Y., Robichon, A., Sokolowski, M.B., Robinson, G.E. (2002) Influence of gene action across different time scales on behavior. Science 296, 741–744

    Article  PubMed  CAS  Google Scholar 

  • Bicker, G., Schäfer, S., Ottersen, O.P., Storm-Mathisen, J. (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J. Neurosci. 8, 2108–2122

    PubMed  CAS  Google Scholar 

  • Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S. (1983) Classical olfactory conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Physiol. 97, 107–119

    CAS  Google Scholar 

  • Bloch, G. (2010) The social clock of the honeybee. J. Biol. Rhythms 25, 307–317

    Article  PubMed  Google Scholar 

  • Brand, A.H., Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415

    PubMed  CAS  Google Scholar 

  • Braun, G., Bicker, G. (1992) Habituation of an appetitive reflex in the honeybee. J. Neurophysiol. 67, 588–598

    PubMed  CAS  Google Scholar 

  • Burke, C.J., Waddell, S. (2011) Remembering nutrient quality of sugar in Drosophila. Curr. Biol. 21, 746–750

    Article  PubMed  CAS  Google Scholar 

  • Chabaud, M.A., Devaud, J.M., Pham-Delègue, M.H., Preat, T., Kaiser, L. (2006) Olfactory conditioning of proboscis activity in Drosophila melanogaster. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 1335–1348

    Article  PubMed  Google Scholar 

  • Claridge-Chang, A., Roorda, R.D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., Miesenböck, G. (2009) Writing memories with light-addressable reinforcement circuitry. Cell 139, 405–415

    Article  PubMed  CAS  Google Scholar 

  • Collett, T.S., Collett, M. (2000) Path integration in insects. Curr. Opin. Neurobiol. 10, 757–762

    Article  PubMed  CAS  Google Scholar 

  • Davis, R.L. (2011) Traces of Drosophila memory. Neuron 70, 8–19

    Article  PubMed  CAS  Google Scholar 

  • Davis, H.P., Squire, L.R. (1984) Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559

    Article  PubMed  CAS  Google Scholar 

  • de Brito Sanchez, M.G., Chen, C., Li, J., Liu, F., Gauthier, M., Giurfa, M. (2008) Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194, 861–869

    Article  PubMed  CAS  Google Scholar 

  • Drier, E.A., Tello, M.K., Cowan, M., Wu, P., Blace, N., Sacktor, T.C., Yin, J.C. (2002) Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat. Neurosci. 5, 316–24

    Article  PubMed  CAS  Google Scholar 

  • Erber, J., Kierzek, S., Sander, E., Grandy, K. (1998) Tactile learning in the honeybee. J. Comp. Physiol. A 183, 737–744

    Article  Google Scholar 

  • Erber, J., Masuhr, T., Menzel, R. (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5, 343–358

    Article  Google Scholar 

  • Erber, J., Pribbenow, B., Grandy, K., Kierzek, S. (1997) Tactile motor learning in the antennal system of the honeybee (Apis mellifera). J. Comp. Physiol. A 181, 355–365

    Article  Google Scholar 

  • Farooqui, T., Robinson, K., Vaessin, H., Smith, B.H. (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci. 23, 5370–5380

    PubMed  CAS  Google Scholar 

  • Flanagan, D., Mercer, A.R. (1989) An atlas and 3-D reconstruction of the antennal lobes in the worker honeybee, Apis mellifera L. Int. J. Insect Morphol. Embryol. 18, 145–159

    Article  Google Scholar 

  • Friedrich, A., Thomas, U., Müller, U. (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J. Neurosci. 24, 4460–4468

    Article  PubMed  CAS  Google Scholar 

  • Fujita, M., Tanimura, T. (2011) Drosophila evaluates and learns the nutritional value of sugars. Curr. Biol. 21, 751–755

    Article  PubMed  CAS  Google Scholar 

  • Funada, M., Yasuo, S., Yoshimura, T., Ebihara, S., Sasagawa, H., Kitagawa, Y., Kadowaki, T. (2004) Characterization of the two distinct subtypes of metabotropic glutamate receptors from honeybee, Apis mellifera. Neurosci. Lett. 359, 190–194

    Article  PubMed  CAS  Google Scholar 

  • Galizia, C.G., Menzel, R. (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr. Opin. Neurobiol. 10, 504–510

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, M. (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. Adv. Exp. Med. Biol. 683, 97–115

    Article  PubMed  CAS  Google Scholar 

  • Giurfa, M. (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr. Opin. Neurobiol. 13, 726–735

    Article  PubMed  CAS  Google Scholar 

  • Grünbaum, L., Müller, U. (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J. Neurosci. 18, 4384–4392

    PubMed  Google Scholar 

  • Hammer, M. (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63

    Article  Google Scholar 

  • Hammer, M., Menzel, R. (1995) Learning and memory in the honeybee. J. Neurosci. 15, 1617–1630

    PubMed  CAS  Google Scholar 

  • Hammer, M., Menzel, R. (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156

    PubMed  CAS  Google Scholar 

  • Haupt, S.S. (2004) Antennal sucrose perception in the honey bee (Apis mellifera L.): behaviour and electrophysiology. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190(9), 735–745

    PubMed  CAS  Google Scholar 

  • Haupt, S.S. (2007) Central gustatory projections and side-specificity of operant antennal muscle conditioning in the honeybee. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 193(5), 523–535

    Article  PubMed  Google Scholar 

  • Heisenberg, M., Borst, A., Wagner, S., Byers, D. (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 1–30

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, H., Müller, U. (1995a) PKA activity in the antennal lobe of honeybees is regulated by chemosensory stimulation in vivo. Brain Res. 679, 281–288

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, H., Müller, U. (1995b) Octopamine mediates rapid stimulation of protein kinase A in the antennal lobe of honeybees. J. Neurobiol. 27, 44–50

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E.R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Krashes, M.J., Waddell, S. (2008) Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J. Neurosci. 28, 3103–3113

    Article  PubMed  CAS  Google Scholar 

  • Kreissl, S., Bicker, G. (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J. Comp. Neurol. 286, 71–84

    Article  PubMed  CAS  Google Scholar 

  • Kreissl, S., Eichmüller, S., Bicker, G., Rapus, J., Eckert, M. (1994) Octopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J. Comp. Neurol. 348, 583–595

    Article  PubMed  CAS  Google Scholar 

  • Kucharski, R., Ball, E., Hayward, D., Maleszka, R. (2000) Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene 244, 399–405

    Article  Google Scholar 

  • Kuwabara, M. (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J. Fac. Sci. Hokkaido Univ. Ser. VI Zool. 13, 458–464

    Google Scholar 

  • Leboulle, G., Müller, U. (2004) Synergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclicAMP and cyclicGMP. FEBS Lett. 576, 216–220

    Article  PubMed  CAS  Google Scholar 

  • Lima, S.Q., Miesenböck, G. (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152

    Article  PubMed  CAS  Google Scholar 

  • Locatelli, F., Bundrock, G., Müller, U. (2005) Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J. Neurosci. 25, 11614–11618

    Article  PubMed  CAS  Google Scholar 

  • Maleszka, R., Helliwell, P., Kucharski, R. (2000) Pharmacological interference with glutamate re-uptake impairs long-term memory in the honeybee, Apis mellifera. Behav. Brain Res. 115, 49–53

    Article  PubMed  CAS  Google Scholar 

  • McGuire, S.E., Roman, G., Davis, R.L. (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391

    Article  PubMed  CAS  Google Scholar 

  • Menzel, R. (1999) Memory dynamics in the honeybee. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 323–340

    Article  Google Scholar 

  • Menzel, R. (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn. Mem. 8, 53–62

    Article  PubMed  CAS  Google Scholar 

  • Menzel R., Erber J., Masuhr T. (1974) Learning and memory in the honeybee. In: Experimental analysis of insect behaviour. (ed. L. B. Browne), pp. 195–217, Springer, Berlin.

  • Menzel, R., Giurfa, M. (2006) Dimensions of cognition in an insect, the honeybee. Behav. Cogn. Neurosci. Rev. 5, 24–40

    Article  PubMed  Google Scholar 

  • Menzel, R., Müller, U. (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu. Rev. Neurosci. 19, 379–404

    Article  PubMed  CAS  Google Scholar 

  • Mobbs P. G. (1982) The brain of the honeybee Apis mellifera I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond B 298: 309–354.

    Google Scholar 

  • Müller, U. (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16, 541–549

    Article  PubMed  Google Scholar 

  • Müller, U. (1997) The nitric oxide system in insects. Prog. Neurobiol. 51, 363–381

    Article  PubMed  Google Scholar 

  • Müller, U. (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27, 159–168

    Article  PubMed  Google Scholar 

  • Müller, U. (2002) Learning in honeybees: from molecules to behaviour. Zoology 105, 313–320

    Article  PubMed  Google Scholar 

  • Müller, U., Hildebrandt, H. (1995) The nitric oxide/cGMP system in the antennal lobe of Apis mellifera is implicated in integrative processing of chemosensory stimuli. Eur. J. Neurosci. 7, 2240–2248

    Article  PubMed  Google Scholar 

  • Müssig, L., Richlitzki, A., Rössler, R., Eisenhardt, D., Menzel, R., Leboulle, G. (2010) Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J. Neurosci. 30, 7817–7825

    Article  PubMed  Google Scholar 

  • Nguyen, P.V., Abel, T., Kandel, E.R. (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Page Jr., R.E., Erber, J., Fondrk, M.K. (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 182, 489–500

    Article  PubMed  Google Scholar 

  • Rehder, V. (1989) Sensory pathways and motoneurons of the proboscis reflex in the suboesophageal ganglion of the honeybee. J. Comp. Neurol. 279, 499–513

    Article  PubMed  CAS  Google Scholar 

  • Riedel, G., Platt, B., Micheau, J. (2003) Glutamate receptor function in learning and memory. Behav. Brain Res. 140, 1–47

    Article  PubMed  CAS  Google Scholar 

  • Root, C.M., Ko, K.I., Jafari, A., Wang, J.W. (2011) Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144

    Article  PubMed  CAS  Google Scholar 

  • Rueppell, O., Pankiw, T., Nielsen, D.I., Fondrk, M.K., Beye, M., Page Jr., R.E. (2004) The genetic architecture of the behavioral ontogeny of foraging in honeybee workers. Genetics 167, 1767–1779

    Article  PubMed  CAS  Google Scholar 

  • Sachse, S., Galizia, C.G. (2002) The role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study. J. Neurophysiol. 87, 1106–1117

    PubMed  Google Scholar 

  • Sacktor, T.C. (2008) PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. Prog. Brain Res. 169, 27–40

    Article  PubMed  CAS  Google Scholar 

  • Scheiner, R., Page Jr., R.E., Erber, J. (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiol. Learn. Mem. 76, 138–150

    Article  PubMed  CAS  Google Scholar 

  • Si, A., Helliwell, P., Maleszka, R. (2004) Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 77, 191–197

    Article  PubMed  CAS  Google Scholar 

  • Smith, B.H., Abramson, C.I., Tobin, T.R. (1991) Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. J. Comp. Psychol. 105, 345–356

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M.V. (2011) Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol. Rev. 91, 413–460

    Article  PubMed  CAS  Google Scholar 

  • Szyszka, P., Ditzen, M., Galkin, A., Galizia, C.G., Menzel, R. (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J. Neurophysiol. 94, 3303–3313

    Article  PubMed  Google Scholar 

  • Toth, A.L., Robinson, G.E. (2007) Evo-devo and the evolution of social behavior. Trends Genet. 23, 334–341

    Article  PubMed  CAS  Google Scholar 

  • Vergoz, V., Roussel, E., Sandoz, J.C., Giurfa, M. (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2(3), e288

    Article  PubMed  Google Scholar 

  • Witthöft, W. (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morphol. Oekol. Tiere. 61, 160–184

    Google Scholar 

  • Wright, G.A., Mustard, J.A., Kottcamp, S.M., Smith, B.H. (2007) Olfactory memory formation and the influence of reward pathway during appetitive learning in honey bees. J. Exp. Biol. 210, 4024–4033

    Article  PubMed  Google Scholar 

  • Wüstenberg, D., Gerber, B., Menzel, R. (1998) Short communication: long- but not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin. Eur. J. Neurosci. 10, 2742–2745

    Article  PubMed  Google Scholar 

  • Xia, S., Miyashita, T., Fu, T.F., Lin, W.Y., Wu, C.L., Pyzocha, L., Lin, I.R., Saitoe, M., Tully, T., Chiang, A.S. (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15, 603–615

    Article  PubMed  CAS  Google Scholar 

  • Zannat, M.T., Locatelli, F., Rybak, J., Menzel, R., Leboulle, G. (2006) Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci. Lett. 398, 274–279

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

I thank Dr. S. Meuser for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Müller.

Additional information

Manuscript editor: Bernd Grünewald

Les processus de signalisation moléculaire à l’origine de l’apprentissage olfactif et de l’acquisition de la mémoire chez les abeilles.

Apprentissage / mémoire / second messager / translation / transcription

Die molekularen Signalwege des olfaktorischen Lernens und der Gedächtnisbildung von Honigbienen.

Lernen / Gedächtnis / second messenger / Translation / Transkription

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U. The molecular signalling processes underlying olfactory learning and memory formation in honeybees. Apidologie 43, 322–333 (2012). https://doi.org/10.1007/s13592-011-0115-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-011-0115-8

Keywords

Navigation