Skip to main content
Log in

Promotion of ferroptosis in head and neck cancer with divalent metal transporter 1 inhibition or salinomycin

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Divalent metal transporter 1 (DMT1) inhibitors can selectively kill iron-addicted cancer stem cells by causing lysosomal iron overload, but their role in head and neck cancer (HNC) is unknown. We examined the role of DMT1 inhibition or salinomycin in promoting ferroptosis by lysosomal iron targeting in HNC cells. RNA interference was performed by transfection of siRNA targeting DMT1 or scrambled control siRNA in HNC cell lines. Cell death and viability, lipid peroxidation, iron contents, and molecular expression were compared between the DMT1 silencing or salinomycin group and the control. DMT1 silencing markedly accelerated cell death induced by the ferroptosis inducers. DMT1 silencing marked increases in the labile iron pool, intracellular ferrous and total iron contents, and lipid peroxidation. DMT1 silencing revealed molecular changes in iron starvation response, resulting in increases in TFRC, and decreases in FTH1. Salinomycin treatment also showed similar results to the above DMT1 silencing. DMT1 silencing or salinomycin can promote ferroptosis in HNC cells, suggesting a novel strategy for killing iron-avid cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All the datasets used and/or analyzed in the current study are presented in the figures.

References

  1. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85. https://doi.org/10.1016/j.cell.2017.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8:586578. https://doi.org/10.3389/fcell.2020.586578.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82. https://doi.org/10.1038/s41580-020-00324-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng H, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16(5):e2006203. https://doi.org/10.1371/journal.pbio.2006203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022. https://doi.org/10.1038/s41568-022-00459-0.

    Article  PubMed  Google Scholar 

  6. Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis—an update. Front Pharmacol. 2014;5:124. https://doi.org/10.3389/fphar.2014.00124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tabuchi M, Yoshimori T, Yamaguchi K, Yoshida T, Kishi F. Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J Biol Chem. 2000;275(29):22220–8. https://doi.org/10.1074/jbc.M001478200.

    Article  CAS  PubMed  Google Scholar 

  8. Turcu AL, Versini A, Khene N, Gaillet C, Cañeque T, Müller S, et al. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation. Chemistry (Weinheim an der Bergstrasse, Germany). 2020;26(33):7369–73. https://doi.org/10.1002/chem.202000159.

    Article  CAS  PubMed  Google Scholar 

  9. Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem. 2017;9(10):1025–33. https://doi.org/10.1038/nchem.2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Versini A, Colombeau L, Hienzsch A, Gaillet C, Retailleau P, Debieu S, et al. Salinomycin derivatives kill breast cancer stem cells by lysosomal iron targeting. Chemistry (Weinheim an der Bergstrasse, Germany). 2020;26(33):7416–24. https://doi.org/10.1002/chem.202000335.

    Article  CAS  PubMed  Google Scholar 

  11. Kim SY, Chu KC, Lee HR, Lee KS, Carey TE. Establishment and characterization of nine new head and neck cancer cell lines. Acta Otolaryngol. 1997;117(5):775–84. https://doi.org/10.3109/00016489709113477.

    Article  CAS  PubMed  Google Scholar 

  12. Yanatori I, Kishi F. DMT1 and iron transport. Free Radical Biol Med. 2019;133:55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020.

    Article  CAS  Google Scholar 

  13. Yan R, Xie E, Li Y, Li J, Zhang Y, Chi X, et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res. 2022. https://doi.org/10.1038/s41422-022-00642-w.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6(1):49. https://doi.org/10.1038/s41392-020-00428-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radical Biol Med. 2002;33(4):473–90. https://doi.org/10.1016/s0891-5849(02)00848-1.

    Article  CAS  Google Scholar 

  16. Leidgens S, Bullough KZ, Shi H, Li F, Shakoury-Elizeh M, Yabe T, et al. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J Biol Chem. 2013;288(24):17791–802. https://doi.org/10.1074/jbc.M113.460253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–8. https://doi.org/10.1038/41343.

    Article  CAS  PubMed  Google Scholar 

  18. Hubert N, Hentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA. 2002;99(19):12345–50. https://doi.org/10.1073/pnas.192423399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Philpott CC, Ryu MS, Frey A, Patel S. Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem. 2017;292(31):12764–71. https://doi.org/10.1074/jbc.R117.791962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics. 2018;10(7):899–916. https://doi.org/10.1039/c8mt00048d.

    Article  CAS  PubMed  Google Scholar 

  21. Tsuji M, Ueda S, Hirayama T, Okuda K, Sakaguchi Y, Isono A, et al. FRET-based imaging of transbilayer movement of pepducin in living cells by novel intracellular bioreductively activatable fluorescent probes. Org Biomol Chem. 2013;11(18):3030–7. https://doi.org/10.1039/c3ob27445d.

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226. https://doi.org/10.3389/fcell.2020.590226.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8. https://doi.org/10.1080/15548627.2016.1187366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51(5):575-86.e4. https://doi.org/10.1016/j.devcel.2019.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017;551(7682):639–43. https://doi.org/10.1038/nature24637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 2016;478(2):838–44. https://doi.org/10.1016/j.bbrc.2016.08.034.

    Article  CAS  PubMed  Google Scholar 

  27. Kim EH, Shin D, Lee J, Jung AR, Roh JL. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 2018;432:180–90. https://doi.org/10.1016/j.canlet.2018.06.018.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Wang X, Huang Z, Zhou Y, Xia J, Hu W, et al. CISD3 inhibition drives cystine-deprivation induced ferroptosis. Cell Death Dis. 2021;12(9):839. https://doi.org/10.1038/s41419-021-04128-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee J, You JH, Shin D, Roh JL. Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis. Theranostics. 2020;10(17):7775–86. https://doi.org/10.7150/thno.46903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee J, You JH, Roh JL. Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer. Redox Biol. 2022;51:102276. https://doi.org/10.1016/j.redox.2022.102276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation of Korea (NRF) grant, funded by the Ministry of Science and ICT (MSIT), Republic of Korea (No. 2019R1A2C2002259).

Author information

Authors and Affiliations

Authors

Contributions

JL: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, and writing (original draft, review and editing). JLR: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing (original draft, review and editing), supervision, and funding acquisition. All authors approved to submit this version for publication.

Corresponding author

Correspondence to Jong-Lyel Roh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any authors. Informed consent from all individuals was not needed because of no human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Roh, JL. Promotion of ferroptosis in head and neck cancer with divalent metal transporter 1 inhibition or salinomycin. Human Cell 36, 1090–1098 (2023). https://doi.org/10.1007/s13577-023-00890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00890-x

Keywords

Navigation