Skip to main content
Log in

Long non-coding RNA RPL34-AS1 ameliorates oxygen–glucose deprivation-induced neuronal injury via modulating miR-223–3p/IGF1R axis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Ribosomal protein L34-antisense RNA 1 (RPL34-AS1), one of the long non-coding RNAs (lncRNAs), plays an important function in regulating diverse human malignant tumors. Nevertheless, the functions of RPL34-AS1 in ischemic stroke remain unclear. The present work focused on determining the candidate targets of RPL34-AS1 and its related mechanism in ischemic injury. The oxygen–glucose deprivation (OGD/R) in vitro cell model and middle cerebral artery occlusion (MCAO) in vivo rat model were utilized to simulate the pathological process of ischemic stroke. Additionally, the CCK8, WB (detecting Bcl-2 and Bax protein levels), and caspase-3 activity assays were done to investigate the anti-apoptotic functions of RPL34-AS1. The relationship among RPL34-AS1, insulin-like growth factor 1 receptor (IGF1R), and microRNA-223-3p (miR-223-3p) was determined through luciferase reporter assay. In this study, RPL34-AS1 expression was reduced in patients suffering from ischemic stroke. The overexpression of RPL34-AS1 reduced ischemic brain damage. However, the cell viability and glucose uptake were increased, and the apoptosis rate was decreased in the OGD/R-induced neurons. Further, miR-223-3p resulted in the decreased cell viability and glucose uptake and the increased cell apoptosis to cause ischemic brain damage. Besides, the neuroprotective effects of RPL34-AS1 on OGD/R injury were partly reversed by miR-223–3p. Mechanistically, lncRNA RPL34-AS1 could function as the competing endogenous RNA (ceRNA) of miR-223-3p to regulate IGF1R. Collectively, our study demonstrated that lncRNA RPL34-AS1 attenuated OGD/R-induced neuronal injury by mediating miR-223-3p/IGF1R axis. This discovery might serve as the candidate therapeutic target for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation. 2020;142(6):556–74. https://doi.org/10.1161/circulationaha.120.045765.

    Article  CAS  PubMed  Google Scholar 

  2. Veltkamp R, Pearce LA, Korompoki E, Sharma M, Kasner SE, Toni D, et al. Characteristics of recurrent ischemic stroke after embolic stroke of undetermined source: secondary analysis of a randomized clinical trial. JAMA Neurol. 2020;77(10):1233–40. https://doi.org/10.1001/jamaneurol.2020.1995.

    Article  PubMed  Google Scholar 

  3. Mestre H, Du T, Sweeney AM, Liu G, Samson AJ, Peng W, et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science. 2020. https://doi.org/10.1126/science.aax7171.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698–714. https://doi.org/10.2174/1871527311312050015.

    Article  CAS  PubMed  Google Scholar 

  5. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–89. https://doi.org/10.1189/jlb.1109766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett. 2019;24:37. https://doi.org/10.1186/s11658-019-0160-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163–164:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001.

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Wan H, Wang Q, Sun H, Sun Y, Wang K, et al. Safflor Yellow B attenuates ischemic brain injury via downregulation of long noncoding AK046177 and inhibition of microRNA-134 expression in rats. Oxid Med Cell Longev. 2020;2020:4586839. https://doi.org/10.1155/2020/4586839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539(7629):452–5. https://doi.org/10.1038/nature20149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hosseini E, Bagheri-Hosseinabadi Z, De Toma I, Jafarisani M, Sadeghi I. The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med. 2019;70:127–40. https://doi.org/10.1016/j.mam.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  11. Wu P, Cai J, Chen Q, Han B, Meng X, Li Y, et al. Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 2019;10(1):2045. https://doi.org/10.1038/s41467-019-10025-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng J, Zhu L, Liu J, Zhu T, Xie Z, Sun X, et al. Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 Axis. Oxid Med Cell Longev. 2019;2019:8768327. https://doi.org/10.1155/2019/8768327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sha R, Han X, Zheng C, Peng J, Wang L, Chen L, et al. The effects of electroacupuncture in a rat model of cerebral ischemia-reperfusion injury following middle cerebral artery occlusion involves microRNA-223 and the PTEN signaling pathway. Med Sci Monit. 2019;25:10077–88. https://doi.org/10.12659/msm.919611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao J, Liu Y, Zhang W, Zhou Z, Wu J, Cui P, et al. Long non-coding RNA Linc00152 is involved in cell cycle arrest, apoptosis, epithelial to mesenchymal transition, cell migration and invasion in gastric cancer. Cell Cycle (Georgetown, Tex). 2015;14(19):3112–23. https://doi.org/10.1080/15384101.2015.1078034.

    Article  CAS  Google Scholar 

  15. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991–5. https://doi.org/10.1093/nar/gks1193.

    Article  CAS  PubMed  Google Scholar 

  16. Yao J, Zhang C, Chen Y, Gao S. Downregulation of circular RNA circ-LDLRAD3 suppresses pancreatic cancer progression through miR-137-3p/PTN axis. Life Sci. 2019;239: 116871. https://doi.org/10.1016/j.lfs.2019.116871.

    Article  CAS  PubMed  Google Scholar 

  17. Kastenmayer RJ, Moore RM, Bright AL, Torres-Cruz R, Elkins WR. Select agent and toxin regulations: beyond the eighth edition the Guide for the Care and Use of Laboratory Animals. J Am Assoc Lab Anim Sci. 2012;51(3):333–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6): e1000412. https://doi.org/10.1371/journal.pbio.1000412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez MS, Vemuganti R. Modeling transient focal ischemic stroke in rodents by intraluminal filament method of middle cerebral artery occlusion. Methods Mol Biol. 2018;1717:101–13. https://doi.org/10.1007/978-1-4939-7526-6_9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci. 2017;37(7):1797–806. https://doi.org/10.1523/jneurosci.3389-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Yu Z, Guo S, Lee SR, Xing C, Zhang C, et al. Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res. 2009;87(1):164–70. https://doi.org/10.1002/jnr.21826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hawkins SF, Guest PC. Multiplex analyses using real-time quantitative PCR. Methods Mol Biol. 2017;1546:125–33. https://doi.org/10.1007/978-1-4939-6730-8_8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Qi M, Feng T, Hu J, Wang L, Li X, et al. IDH1R132H Promotes malignant transformation of benign prostatic epithelium by dysregulating microRNAs: involvement of IGF1R-AKT/STAT3 signaling pathway. Neoplasia. 2018;20(2):207–17. https://doi.org/10.1016/j.neo.2017.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Zhu T, Li Q, Sun G, Sun X. Long non-coding RNA-mediated competing endogenous RNA networks in ischemic stroke: molecular mechanisms, therapeutic implications, and challenges. Front Pharmacol. 2021;12: 765075. https://doi.org/10.3389/fphar.2021.765075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan B, Pan W, Wang X, Wei M, He A, Zhao A, et al. Long noncoding RNA mediates stroke-induced neurogenesis. Stem Cells. 2020;38(8):973–85. https://doi.org/10.1002/stem.3189.

    Article  CAS  PubMed  Google Scholar 

  26. Wang M, Wang L, Pu L, Li K, Feng T, Zheng P, et al. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics. 2020;112(3):2302–8. https://doi.org/10.1016/j.ygeno.2020.01.001.

    Article  CAS  PubMed  Google Scholar 

  27. Cao DW, Liu MM, Duan R, Tao YF, Zhou JS, Fang WR, et al. The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol Sin. 2020;41(1):22–33. https://doi.org/10.1038/s41401-019-0284-y.

    Article  CAS  PubMed  Google Scholar 

  28. Gong Z, Li J, Cang P, Jiang H, Liang J, Hou Y. RPL34-AS1 functions as tumor suppressive lncRNA in esophageal cancer. Biomedi pharmacother Biomed Pharmacother. 2019;120:109440. https://doi.org/10.1016/j.biopha.2019.109440.

    Article  CAS  Google Scholar 

  29. Ji L, Fan X, Zhou F, Gu J, Deng X. lncRNA RPL34-AS1 inhibits cell proliferation and invasion while promoting apoptosis by competitively binding miR-3663-3p/RGS4 in papillary thyroid cancer. J Cell Physiol. 2020;235(4):3669–78. https://doi.org/10.1002/jcp.29256.

    Article  CAS  PubMed  Google Scholar 

  30. Guo D, Ma J, Yan L, Li T, Li Z, Han X, et al. Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem. 2017;43(1):182–94. https://doi.org/10.1159/000480337.

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Chen L, Zhou X, Li J, Liu J. miRNA-223-3p and let-7b-3p as potential blood biomarkers associated with the ischemic penumbra in rats. Acta Neurobiol Exp (Wars). 2019;79(2):205–16.

    Article  Google Scholar 

  32. Han L, Li Z, Jiang Y, Jiang Z, Tang L. SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/beta-catenin signaling pathway. Cancer Cell Int. 2019;19:345. https://doi.org/10.1186/s12935-019-1057-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morquette B, Juźwik CA, Drake SS, Charabati M, Zhang Y, Lécuyer MA, et al. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain. 2019;142(10):2979–95. https://doi.org/10.1093/brain/awz245.

    Article  PubMed  Google Scholar 

  34. Fettig LM, Yee D. Advances in insulin-like growth factor biology and -directed cancer therapeutics. Adv Cancer Res. 2020;147:229–57. https://doi.org/10.1016/bs.acr.2020.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffiths CD, Bilawchuk LM, McDonough JE, Jamieson KC, Elawar F, Cen Y, et al. IGF1R is an entry receptor for respiratory syncytial virus. Nature. 2020;583(7817):615–9. https://doi.org/10.1038/s41586-020-2369-7.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang XQ, Song LH, Feng SJ, Dai XM. LncRNA FGD5-AS1 acts as a competing endogenous RNA for miRNA-223 to lessen oxygen-glucose deprivation and simulated reperfusion (OGD/R)-induced neurons injury. Folia Neuropathol. 2019;57(4):357–65. https://doi.org/10.5114/fn.2019.91194.

    Article  PubMed  Google Scholar 

  37. Feng SJ, Zhang XQ, Li JT, Dai XM, Zhao F. miRNA-223 regulates ischemic neuronal injury by targeting the type 1 insulin-like growth factor receptor (IGF1R). Folia Neuropathol. 2018;56(1):49–57. https://doi.org/10.5114/fn.2018.74659.

    Article  PubMed  Google Scholar 

  38. Jiang LH, Yuan XL, Yang NY, Ren L, Zhao FM, Luo BX, et al. Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway. J Steroid Biochem Mol Biol. 2015;152:45–52. https://doi.org/10.1016/j.jsbmb.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  39. Hu S, Zheng J, Du Z, Wu G. Knock down of lncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Res. 2020;1732: 146681. https://doi.org/10.1016/j.brainres.2020.146681.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Liu M, Huang M, Chen M, Zhang D, Luo L, et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res. 2019;144:292–305. https://doi.org/10.1016/j.phrs.2019.04.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present work did not receive specific grants from any public funding agency. This work was supported by the Innovation Science Research Fund of Harbin Medical University [2020-KYYWF-1479].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-lan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

The study protocols were approved by the Institutional Review Board of The Fourth Affiliated Hospital of Harbin Medical University (2021-WZYSLLSC-10) and was conducted strictly following the Declaration of Helsinki. The experiments were approved by the Experimental Center of the Fourth Affiliated Hospital of Harbin Medical University (2021-WZYSLLSC-10) and were performed following corresponding animal experiment institutional guidelines.

Informed consent

Each volunteer provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_773_MOESM1_ESM.tif

Fig S1. The binding capacities among RPL34-AS1, miR-223-3p and IGF1R. (A) The binding capacity between RPL34-AS1 and miR-223-3p was verified through RNA pull down assay. (B) The binding capacity between IGF1R and miR-223-3p was verified through RNA pull down assay. ***P < 0.001

13577_2022_773_MOESM2_ESM.pdf

Fig S2. The western blot images with positions of molecular weight markers. (A) The western blot images for Fig. 3C. (B) The western blot images for Fig. 6B. (B) The western blot images for Fig. 6F

Supplementary file3 (PPTX 249 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Xy., Zhang, Tq., Suo, R. et al. Long non-coding RNA RPL34-AS1 ameliorates oxygen–glucose deprivation-induced neuronal injury via modulating miR-223–3p/IGF1R axis. Human Cell 35, 1785–1796 (2022). https://doi.org/10.1007/s13577-022-00773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00773-7

Keywords

Navigation