Skip to main content
Log in

Blockade of ASIC1a inhibits acid-induced rat articular chondrocyte senescence through regulation of autophagy

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Acid-sensitive ion channel 1a (ASIC1a), which is abundant in chondrocytes, can sense changes in extracellular acidification. Our previous data demonstrated that ASIC1a is involved in acid-induced rat articular chondrocyte damage in osteoarthritis; however, its specific mechanisms remain unclear. The present study aims to explore the role of ASIC1a in rat articular chondrocyte senescence. RNA-seq transcriptome analysis identified senescence-associated secretory phenotype and matrix metalloproteinases genes were overexpressed by extracellular acidification (pH 6.0) in rat articular chondrocytes. An increase in senescence-associated β-galactosidase and senescence-related markers p16, p21 and p53 was observed in the pH 6.0-treated group compared with the control group. Acid-induced senescence-related markers could be blocked by the ASIC1a-specific inhibitor psalmotoxin-1 in rat articular chondrocytes and human immortalized C28/I2 chondrocyte cell lines. Moreover, our results showed that extracellular acidification increased autophagosomes and the autophagy-related proteins LC3B-II and Beclin-1; these effects could also be reversed by psalmotoxin-1 treatment, indicating ASIC1a participated in acid-induced chondrocyte autophagy. Blocking ASIC1a-mediated autophagy with chloroquine also inhibited senescence-related markers, decreased ROS expression, and restored cell membrane potential induced by pH 6.0 treatment. Taken together, these findings suggested that ASIC1a may be involved in acid-induced rat articular chondrocyte senescence by activating autophagy, which provides a potential therapeutic strategy for the treatment of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365(9463):965–73. https://doi.org/10.1016/S0140-6736(05)71086-2.

    Article  CAS  PubMed  Google Scholar 

  2. Nannoni G, Volterrani G, Mattarocci A, Minoretti P, Emanuele E. Comparative efficacy and safety of Verbascox((R))—a proprietary herbal extract capable of inhibiting human cyclooxygenase-2 - and celecoxib for knee osteoarthritis. Drug Discov Ther. 2020;14(3):129–34. https://doi.org/10.5582/ddt.2020.03034.

    Article  CAS  PubMed  Google Scholar 

  3. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarth Lancet. 2015;386(9991):376–87. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  Google Scholar 

  4. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018;30(2):160–7. https://doi.org/10.1097/BOR.0000000000000479.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Itahana K, Itahana Y, Dimri GP. Colorimetric detection of senescence-associated beta galactosidase. Methods Mol Biol. 2013;965:143–56. https://doi.org/10.1007/978-1-62703-239-1_8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90. https://doi.org/10.1038/ncb2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000–11. https://doi.org/10.1016/j.cell.2017.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou A, Chen P, Tang H, Meng H, Cheng X, Wang Y, et al. Cellular senescence in osteoarthritis and anti-aging strategies. Mech Ageing Dev. 2018;175:83–7. https://doi.org/10.1016/j.mad.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  9. Ahn H, Kim JM, Lee K, Kim H, Jeong D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem Biophys Res Commun. 2012;418(1):144–8. https://doi.org/10.1016/j.bbrc.2011.12.149.

    Article  CAS  PubMed  Google Scholar 

  10. Mansson B, Geborek P, Saxne T, Bjornsson S. Cytidine deaminase activity in synovial fluid of patients with rheumatoid arthritis: relation to lactoferrin, acidosis, and cartilage proteoglycan release. Ann Rheum Dis. 1990;49(8):594–7. https://doi.org/10.1136/ard.49.8.594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai B, Zhu F, Chen Y, Zhou R, Wang Z, Xie Y et al. ASIC1a Promotes acid-induced autophagy in rat articular chondrocytes through the AMPK/FoxO3a pathway. Int J Mol Sci. 2017;18(10). https://doi.org/10.3390/ijms18102125.

  12. Yingjun G, Xun Q. Acid-sensing ion channels under hypoxia. Channels (Austin). 2013;7(4):231–7. https://doi.org/10.4161/chan.25223.

    Article  Google Scholar 

  13. Chen Y, Zhu CJ, Zhu F, Dai BB, Song SJ, Wang ZQ, et al. Necrostatin-1 ameliorates adjuvant arthritis rat articular chondrocyte injury via inhibiting ASIC1a-mediated necroptosis. Biochem Biophys Res Commun. 2018;504(4):843–50. https://doi.org/10.1016/j.bbrc.2018.09.031.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Qian X, Yang X, Niu R, Song S, Zhu F, et al. ASIC1a induces synovial inflammation via the Ca(2+)/NFATc3/ RANTES pathway. Theranostics. 2020;10(1):247–64. https://doi.org/10.7150/thno.37200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan ZY, Lu Y, Whiteis CA, Simms AE, Paton JF, Chapleau MW, et al. Chemoreceptor hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR. Circ Res. 2010;106(3):536–45. https://doi.org/10.1161/CIRCRESAHA.109.206946.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou R, Wu X, Wang Z, Ge J, Chen F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int Immunopharmacol. 2015;29(2):748–60. https://doi.org/10.1016/j.intimp.2015.08.044.

    Article  CAS  PubMed  Google Scholar 

  17. Hu W, Chen FH, Yuan FL, Zhang TY, Wu FR, Rong C, et al. Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury. Inflamm Res. 2012;61(4):327–35. https://doi.org/10.1007/s00011-011-0414-6.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010;340(1–2):153–9. https://doi.org/10.1007/s11010-010-0412-y.

    Article  CAS  PubMed  Google Scholar 

  19. Ding J, Zhang R, Li H, Ji Q, Cheng X, Thorne RF, et al. ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY). 2021;13(7):10703–23. https://doi.org/10.18632/aging.202850.

    Article  CAS  Google Scholar 

  20. Herranz N. Gil JJTJoci. Mechanisms and functions of cellular senescence. 2018;128(4):1238–46. https://doi.org/10.1172/jci95148.

    Article  Google Scholar 

  21. Kim BK, Kim SA, Baek SM, Lee EY, Lee ES, Chung CH, et al. Cur 2004–8, a synthetic curcumin derivative, extends lifespan and modulates age-related physiological changes in Caenorhabditis elegans. Drug Discov Ther. 2019;13(4):198–206. https://doi.org/10.5582/ddt.2019.01057.

    Article  CAS  PubMed  Google Scholar 

  22. Lee H, Zhao X, Son Y, Yang SJP. Therapeutic single compounds for osteoarthritis treatment. 2021;14(2). https://doi.org/10.3390/ph14020131.

  23. Qin R, Sun J, Wu J. Pyrroloquinoline quinone prevents knee osteoarthritis by inhibiting oxidative stress and chondrocyte senescence. Am J Transl Res. 2019;11(3):1460–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Allaire M, Rautou P, Codogno P, Lotersztajn SJJ. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70(5):985–98. https://doi.org/10.1016/j.jhep.2019.01.026.

    Article  PubMed  Google Scholar 

  25. Wei X, Sun C, Zhou R, Ma G, Yang Y, Lu C, et al. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol. 2020;82:6340. https://doi.org/10.1016/j.intimp.2020.106340.

    Article  CAS  Google Scholar 

  26. Cai F, Wang F, Hong X, Xie X, Shi R, Xie Z, et al. Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs. Iran J Basic Med Sci. 2016;19(8):812–20.

    PubMed  PubMed Central  Google Scholar 

  27. Zhou R, Zhu F, Wu X, Song S, Chen Y, Zhu C, et al. Effects of autophagy on apoptosis of articular chondrocytes in adjuvant arthritis rats. J Cell Mol Med. 2019;23(11):7879–84. https://doi.org/10.1111/jcmm.14629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, et al. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest. 1994;94(6):2307–16. https://doi.org/10.1172/JCI117595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Yu Y, Li S, Liu Y, Zhou S, Cao S, et al. MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy. J Cell Mol Med. 2017;21(12):3679–92. https://doi.org/10.1111/jcmm.13278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCulloch K, Litherland G. Cellular senescence in osteoarthritis pathology. Aging Cell. 2017;16(2):210–8. https://doi.org/10.1111/acel.12562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeon O, Kim C, Laberge R, Demaria M, Rathod S, Vasserot A, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81. https://doi.org/10.1038/nm.4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Y, Chen FJF. Acid-sensing ion channel-1a in articular chondrocytes and synovial fibroblasts: a novel therapeutic target for rheumatoid arthritis. Front Immunol. 2020;11:580936. https://doi.org/10.3389/fimmu.2020.580936.

    Article  CAS  PubMed  Google Scholar 

  33. Mehana E, Khafaga A. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 2019;234: 116786. https://doi.org/10.1016/j.lfs.2019.116786.

    Article  CAS  PubMed  Google Scholar 

  34. Yang C, Chanalaris A, Troeberg LJO. ADAMTS and ADAM metalloproteinases in osteoarthritis—looking beyond the “usual suspects.” Osteoarth Cartil. 2017;25(7):1000–9. https://doi.org/10.1016/j.joca.2017.02.791.

    Article  CAS  Google Scholar 

  35. Kirkland J, Tchkonia TJE. Cellular senescence: A translational. Perspective. 2017;21:21–8. https://doi.org/10.1016/j.ebiom.2017.04.013.

    Article  Google Scholar 

  36. Dai C, Jia J, Kot A, Liu X, Liu L, Jiang M, et al. Selective inhibition of progesterone receptor in osteochondral progenitor cells, but not in mature chondrocytes, modulated subchondral bone structures. Bone. 2020;132: 115196. https://doi.org/10.1016/j.bone.2019.115196.

    Article  CAS  PubMed  Google Scholar 

  37. Castrogiovanni P, Di Rosa M, Ravalli S, Castorina A, Guglielmino C, Imbesi R, et al. Moderate physical activity as a prevention method for knee osteoarthritis and the role of synoviocytes as biological key. Int J Mol Sci. 2019;20(3):511. https://doi.org/10.3390/ijms20030511.

    Article  CAS  PubMed Central  Google Scholar 

  38. Borzì R, Cetrullo S, D’Adamo S, Minguzzi M. Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300. Exp Mol Med. 2019;51(3):1–2. https://doi.org/10.1038/s12276-019-0224-4.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng G, Zhan Y, Li X, Pan Z, et al. TFEB, a potential therapeutic target for osteoarthritis via autophagy regulation. Cell Death Dis. 2018;9(9):858. https://doi.org/10.1038/s41419-018-0909-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang CL, Peng JP, Chen XD. LncRNA-CIR promotes articular cartilage degeneration in osteoarthritis by regulating autophagy. Biochem Biophys Res Commun. 2018;505(3):692–8. https://doi.org/10.1016/j.bbrc.2018.09.163.

    Article  CAS  PubMed  Google Scholar 

  41. Hwang HS, Yang CM, Park SJ, Kim HA. Monosodium urate crystal-induced chondrocyte death via autophagic process. Int J Mol Sci. 2015;16(12):29265–77. https://doi.org/10.3390/ijms161226164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang J, Wang W, Zhang H, Hu Y, Wang M, Yin Z. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med. 2013;32(6):1311–8. https://doi.org/10.3892/ijmm.2013.1520.

    Article  CAS  PubMed  Google Scholar 

  43. Luo Y, Zou P, Zou J, Wang J, Zhou D, Liu L. Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKalpha dependent manner. Exp Gerontol. 2011;46(11):860–7. https://doi.org/10.1016/j.exger.2011.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mar F, Debnath J, Stohr BJA. Autophagy-independent senescence and genome instability driven by targeted telomere dysfunction. Autophagy. 2015;11(3):527–37. https://doi.org/10.1080/15548627.2015.1017189.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 82071591, 81902182) and the Natural Science Foundation of Anhui Province (Grant No. 1908085QH317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renpeng Zhou or Wei Hu.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ding, J., Chen, Y. et al. Blockade of ASIC1a inhibits acid-induced rat articular chondrocyte senescence through regulation of autophagy. Human Cell 35, 665–677 (2022). https://doi.org/10.1007/s13577-022-00676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00676-7

Keywords

Navigation