Skip to main content

Advertisement

Log in

Histone deacetylase 6-mediated downregulation of TMEM100 expedites the development and progression of non-small cell lung cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The significance of epigenetic modulation, involving acetylation, methylation, as well as ubiquitination has been indicated in the regulation of gene expression and tumor progression. Here, we elucidated the role of histone deacetylase 6 (HDAC6) in regulating epithelial-mesenchymal transition (EMT)-mediated metastasis via mRNA in non-small cell lung cancer (NSCLC). Three microarrays associated with lung cancer metastasis or recurrence, GSE23361, GSE7880 and GSE162102, were downloaded from the GEO database. Transmembrane protein 100 (TMEM100) was revealed to be the only one mRNA that was significantly downregulated in three microarrays. TMEM100, poorly expressed in lung cancer tissues, was associated with poor prognosis of lung cancer patients. Moreover, TMEM100 transcription was regulated by HDAC6 which repressed TMEM100 expression by deacetylation modification on the TMEM100 promoter. Knockdown of HDAC6 or overexpression of TMEM100 in NSCLC cells significantly inhibited TGF-β1-induced EMT and metastasis and suppressed the activation of Wnt/β-catenin signaling pathway. Altogether, our study highlights HDAC6 as a lung cancer metastasis supporter through the suppression of TMEM100 and the induction of Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

Abbreviations

ChIP:

Chromatin immunoprecipitation

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GEO:

Gene Expression Omnibus

GSEA:

Gene set enrichment analysis

HDAC6:

Histone deacetylase 6

HRP:

Horseradish peroxidase

RT-qPCR:

Reverse transcription-quantitative PCR

shRNA:

Short hairpin RNA

TBST:

Tris-buffered saline with Tween

TMEM100:

Transmembrane protein 100

References

  1. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19. https://doi.org/10.1007/978-3-319-24223-1_1.

    Article  PubMed  Google Scholar 

  2. Politi K, Herbst RS. Lung cancer in the era of precision medicine. Clin Cancer Res. 2015;21(10):2213–20. https://doi.org/10.1158/1078-0432.CCR-14-2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85. https://doi.org/10.3322/caac.21565.

    Article  Google Scholar 

  4. Ko J, Winslow MM, Sage J. Mechanisms of small cell lung cancer metastasis. EMBO Mol Med. 2021;13(1): e13122. https://doi.org/10.15252/emmm.202013122.

    Article  CAS  PubMed  Google Scholar 

  5. Moon EH, Kim MJ, Ko KS, Kim YS, Seo J, Oh SP, et al. Generation of mice with a conditional and reporter allele for Tmem100. Genesis. 2010;48(11):673–8. https://doi.org/10.1002/dvg.20674.

    Article  CAS  PubMed  Google Scholar 

  6. Frullanti E, Colombo F, Falvella FS, Galvan A, Noci S, De Cecco L, et al. Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue. Int J Cancer. 2012;131(5):E643–8. https://doi.org/10.1002/ijc.27426.

    Article  CAS  PubMed  Google Scholar 

  7. Han Z, Wang T, Han S, Chen Y, Chen T, Jia Q, et al. Low-expression of TMEM100 is associated with poor prognosis in non-small-cell lung cancer. Am J Transl Res. 2017;9(5):2567–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. 2016;6(10). doi:https://doi.org/10.1101/cshperspect.a026831.

  9. Wang Z, Tang F, Hu P, Wang Y, Gong J, Sun S, et al. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncol Rep. 2016;36(1):589–97. https://doi.org/10.3892/or.2016.4811.

    Article  CAS  PubMed  Google Scholar 

  10. Aldana-Masangkay GI, Sakamoto KM. The role of HDAC6 in cancer. J Biomed Biotechnol. 2011;2011: 875824. https://doi.org/10.1155/2011/875824.

    Article  CAS  PubMed  Google Scholar 

  11. Deskin B, Lasky J, Zhuang Y, Shan B. Requirement of HDAC6 for activation of Notch1 by TGF-beta1. Sci Rep. 2016;6:31086. https://doi.org/10.1038/srep31086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 2001;98(24):13784–9. https://doi.org/10.1073/pnas.241500798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lam TK, Rotunno M, Ryan BM, Pesatori AC, Bertazzi PA, Spitz M, et al. Heme-related gene expression signatures of meat intakes in lung cancer tissues. Mol Carcinog. 2014;53(7):548–56. https://doi.org/10.1002/mc.22006.

    Article  CAS  PubMed  Google Scholar 

  14. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012;72(1):100–11. https://doi.org/10.1158/0008-5472.CAN-11-1403.

    Article  CAS  PubMed  Google Scholar 

  15. Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M, et al. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res. 2012;22(7):1197–211. https://doi.org/10.1101/gr.132662.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu SC, Shen WB, Liu ZK, Li J, Su JW, Wang YX. Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma. Tumori. 2011;97(5):596–602. https://doi.org/10.1700/989.10718.

    Article  PubMed  Google Scholar 

  17. Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics. 2005;21(23):4205–8. https://doi.org/10.1093/bioinformatics/bti688.

    Article  CAS  PubMed  Google Scholar 

  18. Lu YL. Spontaneous metastasis of clonal cell subpopulations of human lung giant cell carcinoma after subcutaneous inoculation in nude mice. Zhonghua Zhong Liu Za Zhi. 1989;11(1):1–7.

    CAS  PubMed  Google Scholar 

  19. Giaccone G, Battey J, Gazdar AF, Oie H, Draoui M, Moody TW. Neuromedin B is present in lung cancer cell lines. Cancer Res. 1992;52(9 Suppl):2732s-s2736.

    CAS  PubMed  Google Scholar 

  20. Drabsch Y, ten Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3–4):553–68. https://doi.org/10.1007/s10555-012-9375-7.

    Article  CAS  PubMed  Google Scholar 

  21. Hseu YC, Lin YC, Rajendran P, Thigarajan V, Mathew DC, Lin KY, et al. Antrodia salmonea suppresses invasion and metastasis in triple-negative breast cancer cells by reversing EMT through the NF-kappaB and Wnt/beta-catenin signaling pathway. Food Chem Toxicol. 2019;124:219–30. https://doi.org/10.1016/j.fct.2018.12.009.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang C, Hao Y, Wang Y, Xu J, Teng Y, Yang X. TGF-beta/SMAD4-Regulated LncRNA-LINP1 inhibits epithelial-mesenchymal transition in lung cancer. Int J Biol Sci. 2018;14(12):1715–23. https://doi.org/10.7150/ijbs.27197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tse BW, Russell PJ, Lochner M, Forster I, Power CA. IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms. PLoS ONE. 2011;6(9): e24241. https://doi.org/10.1371/journal.pone.0024241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong QY, Wu GM, Qian GS, Hu CP, Zhou JY, Chen LA, et al. Prevention and management of lung cancer in China. Cancer. 2015;121(Suppl 17):3080–8. https://doi.org/10.1002/cncr.29584.

    Article  PubMed  Google Scholar 

  25. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412. https://doi.org/10.1146/annurev-pathol-020117-043854.

    Article  CAS  PubMed  Google Scholar 

  26. Ren D, Ju P, Liu J, Ni D, Gu Y, Long Y, et al. BMP7 plays a critical role in TMEM100-inhibited cell proliferation and apoptosis in mouse metanephric mesenchymal cells in vitro. In Vitro Cell Dev Biol Anim. 2018;54(2):111–9. https://doi.org/10.1007/s11626-017-0211-9.

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang J, Huang Y, Zheng W, Yang S, Zhu G, Wang J, et al. TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer. Biol Chem. 2020;401(2):285–96. https://doi.org/10.1515/hsz-2019-0161.

    Article  CAS  PubMed  Google Scholar 

  28. Bartis D, Mise N, Mahida RY, Eickelberg O, Thickett DR. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax. 2014;69(8):760–5. https://doi.org/10.1136/thoraxjnl-2013-204608.

    Article  PubMed  Google Scholar 

  29. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60. https://doi.org/10.1016/j.ctrv.2017.11.002.

    Article  CAS  Google Scholar 

  30. Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 2014;106(1):djt356. doi:https://doi.org/10.1093/jnci/djt356.

  31. Mamdani H, Jalal SI. Histone deacetylase inhibition in non-small cell lung cancer: hype or hope? Front Cell Dev Biol. 2020;8: 582370. https://doi.org/10.3389/fcell.2020.582370.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hu Z, Rong Y, Li S, Qu S, Huang S. Upregulated histone deacetylase 6 associates with malignant progression of melanoma and predicts the prognosis of patients. Cancer Manag Res. 2020;12:12993–3001. https://doi.org/10.2147/CMAR.S284199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang WB, Hsu CC, Hsu TI, Liou JP, Chang KY, Chen PY, et al. Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma. Neuro Oncol. 2020;22(10):1439–51. https://doi.org/10.1093/neuonc/noaa103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deskin B, Yin Q, Zhuang Y, Saito S, Shan B, Lasky JA. Inhibition of HDAC6 attenuates tumor growth of non-small cell lung cancer. Transl Oncol. 2020;13(2):135–45. https://doi.org/10.1016/j.tranon.2019.11.001.

    Article  PubMed  Google Scholar 

  35. Wang L, Xiang S, Williams KA, Dong H, Bai W, Nicosia SV, et al. Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS ONE. 2012;7(9): e44265. https://doi.org/10.1371/journal.pone.0044265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Natural Science Research Project of Department of Education of Liaoning Province (JYTQN2020036).

Author information

Authors and Affiliations

Authors

Contributions

YYW, MWH conceived and designed the experiments; ML performed the experiments; YYW, MWH, LZ and YTC analyzed and interpreted the data; YYW wrote the manuscript; MWH and ML revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Minwen Ha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was permitted by the Ethics Committee of the First Affiliated Hospital of Jinzhou Medical University. All animal experiments were conducted as per the Guide for the Care and Use of Laboratory Animal by International Committees.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 233 kb)

Supplementary file2 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ha, M., Li, M. et al. Histone deacetylase 6-mediated downregulation of TMEM100 expedites the development and progression of non-small cell lung cancer. Human Cell 35, 271–285 (2022). https://doi.org/10.1007/s13577-021-00635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00635-8

Keywords

Navigation