Skip to main content

Advertisement

Log in

Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast cancer by sponging microRNA-485-5p and consequently increasing expression of FLOT1 expression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The dysregulated long non-coding RNA A1BG antisense RNA 1 (A1BG-AS1) has been implicated in the oncogenicity of hepatocellular carcinoma. Using reverse transcription quantitative polymerase chain reaction in this study, we detected A1BG-AS1 expression in breast cancer and elucidated the regulatory functions and exact mechanisms of A1BG-AS1 in breast cancer cells. The regulatory functions of A1BG-AS1 were examined in vitro using the Cell Counting Kit-8 assay, flow cytometric, and Transwell migration and invasion assays and in vivo through tumor xenograft experiments. In addition, we performed bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation, and rescue experiments to verify the interaction among A1BG-AS1, microRNA-485-5p (miR-485-5p), and flotillin-1 (FLOT1) in breast cancer. We found A1BG-AS1 to be highly expressed in breast cancer tissues and cell lines. In terms of function, depleted A1BG-AS1 markedly suppressed cell proliferation, accelerated cell apoptosis, and hindered cell migration and invasion in breast cancer. Furthermore, A1BG-AS1 interference reduced tumor growth in vivo. Mechanistic investigations confirmed that A1BG-AS1 directly interacted with miR-485-5p as a molecular sponge. We demonstrated that FLOT1 is a direct target of miR-485-5p, which could be positively regulated by A1BG-AS1 by competing for miR-485-5p. Rescue experiments clearly showed that the downregulation of miR-485-5p and upregulation of FLOT1 were capable of reversing the anticancer activities of A1BG-AS1 deficiency in terms of breast cancer cell malignancy. A1BG-AS1 acts as a miR-485-5p sponge and subsequently increases FLOT1 expression in breast cancer cells, ultimately facilitating cancer progression. Hence, the A1BG-AS1/miR-485-5p/FLOT1 pathway might offer a novel therapeutic perspective for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Bertucci F, Ng CKY, Patsouris A, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–4.

    Article  CAS  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA. 2019;69:7–34.

    PubMed  Google Scholar 

  4. Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol. 2015;172:4228–37.

    Article  CAS  Google Scholar 

  5. Sundquist M, Brudin L, Tejler G. Improved survival in metastatic breast cancer 1985–2016. Breast. 2017;31:46–50.

    Article  Google Scholar 

  6. Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019;20:82.

    Article  Google Scholar 

  7. Castrellon AB. Novel strategies to improve the endocrine therapy of breast cancer. Oncol Rev. 2017;11:323.

    PubMed  PubMed Central  Google Scholar 

  8. Woolston C. Breast cancer. Nature. 2015;527:S101.

    Article  CAS  Google Scholar 

  9. Carmichael H, Matsen C, Freer P, et al. Breast cancer screening of pregnant and breastfeeding women with BRCA mutations. Breast Cancer Res Treat. 2017;162:225–30.

    Article  Google Scholar 

  10. Ng CK, Martelotto LG, Gauthier A, et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 2015;16:107.

    Article  Google Scholar 

  11. Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev. 2018;34:153–80.

    Article  CAS  Google Scholar 

  12. He RZ, Luo DX, Mo YY. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis. 2019;6:6–15.

    Article  CAS  Google Scholar 

  13. Choudhari R, Sedano MJ, Harrison AL, et al. Long noncoding RNAs in cancer: from discovery to therapeutic targets. Adv Clin Chem. 2020;95:105–47.

    Article  CAS  Google Scholar 

  14. Decmann A, Perge P, Turai PI, Patocs A, Igaz P. Non-coding RNAs in adrenocortical cancer: from pathogenesis to diagnosis. Cancers. 2020;12:461.

    Article  CAS  Google Scholar 

  15. Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol. 2020;113:104365.

    Article  CAS  Google Scholar 

  16. Feng H, Wang Q, Xiao W, Zhang B, Jin Y, Lu H. LncRNA TTN-AS1 regulates miR-524-5p and RRM2 to promote breast cancer progression. Onco Targets Ther. 2020;13:4799–811.

    Article  CAS  Google Scholar 

  17. Cantile M, Di Bonito M, Cerrone M, Collina F, De Laurentiis M, Botti G. Long non-coding RNA HOTAIR in breast cancer therapy. Cancers. 2020;12:1197.

    Article  CAS  Google Scholar 

  18. Jin X, Ge LP, Li DQ, et al. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol Cancer. 2020;19:87.

    Article  CAS  Google Scholar 

  19. Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci. 2020;6:FSO465.

    Article  CAS  Google Scholar 

  20. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  Google Scholar 

  21. Khalife H, Skafi N, Fayyad-Kazan M, Badran B. MicroRNAs in breast cancer: new maestros defining the melody. Cancer Genet. 2020;246–247:18–40.

    Article  Google Scholar 

  22. Abdalla F, Singh B, Bhat HK. MicroRNAs and gene regulation in breast cancer. J Biochem Mol Toxicol. 2020. https://doi.org/10.1002/jbt.22567.

    Article  PubMed  Google Scholar 

  23. Yang Z, Liu Z. The emerging role of MicroRNAs in breast cancer. J Oncol. 2020;2020:9160905.

    PubMed  PubMed Central  Google Scholar 

  24. Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: a new look at hallmarks of breast cancer. J Cell Physiol. 2019;234:10080–100.

    Article  CAS  Google Scholar 

  25. Bai J, Yao B, Wang L, et al. lncRNA A1BG-AS1 suppresses proliferation and invasion of hepatocellular carcinoma cells by targeting miR-216a-5p. J Cell Biochem. 2019;120:10310–22.

    Article  CAS  Google Scholar 

  26. Zhang XZ, Liu H, Chen SR. Mechanisms of long non-coding RNAs in sations. Cancers. 2020;12:1245.

    Article  CAS  Google Scholar 

  27. Lin C, Wu Z, Lin X, et al. Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin Cancer Res. 2011;17:3089–99.

    Article  CAS  Google Scholar 

  28. Li L, Luo J, Wang B, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 2013;12:163.

    Article  Google Scholar 

  29. Yeh CF, Chang YE, Lu CY, Hsuan CF, Chang WT, Yang KC. Expedition to the missing link: long noncoding RNAs in cardiovascular diseases. J Biomed Sci. 2020;27:48.

    Article  CAS  Google Scholar 

  30. Tsagakis I, Douka K, Birds I, Aspden JL. Long non-coding RNAs in development and disease: conservation to mechanisms. J Pathol. 2020. https://doi.org/10.1002/path.5405.

    Article  PubMed  Google Scholar 

  31. Du T, Shi Y, Xu S, Wan X, Sun H, Liu B. Long non-coding RNAs in drug resistance of breast cancer. Onco Targets Ther. 2020;13:7075–87.

    Article  CAS  Google Scholar 

  32. Amelio I, Bernassola F, Candi E. Emerging roles of long non-coding RNAs in breast cancer biology and management. Semin Cancer Biol. 2020;72:36–45.

    Article  Google Scholar 

  33. Takeiwa T, Ikeda K, Mitobe Y, Horie-Inoue K, Inoue S. Long noncoding RNAs involved in the endocrine therapy resistance of breast cancer. Cancers. 2020;12:1424.

    Article  CAS  Google Scholar 

  34. Ye Y, Shen A, Liu A. Long non-coding RNA H19 and cancer: a competing endogenous RNA. Bull Cancer. 2019;106:1152–9.

    Article  Google Scholar 

  35. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 2019;20:5758.

    Article  CAS  Google Scholar 

  36. Wang X, Zhou X, Zeng F, Wu X, Li H. miR-485-5p inhibits the progression of breast cancer cells by negatively regulating MUC1. Breast Cancer. 2020;27:765–75.

    Article  Google Scholar 

  37. Wang M, Cai WR, Meng R, et al. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin. Biochem Biophys Res Commun. 2018;501:48–54.

    Article  CAS  Google Scholar 

  38. Lou C, Xiao M, Cheng S, et al. MiR-485-3p and miR-485-5p suppress breast cancer cell metastasis by inhibiting PGC-1alpha expression. Cell Death Dis. 2016;7:e2159.

    Article  CAS  Google Scholar 

  39. Kurrle N, Ockenga W, Meister M, et al. Phosphatidylinositol 3-Kinase dependent upregulation of the epidermal growth factor receptor upon Flotillin-1 depletion in breast cancer cells. BMC Cancer. 2013;13:575.

    Article  Google Scholar 

  40. Banning A, Kurrle N, Meister M, Tikkanen R. Flotillins in receptor tyrosine kinase signaling and cancer. Cells. 2014;3:129–49.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Lishui key medical discipline construction project (2017ZDXK10) and the Lishui Science and Technology Project (2019SJZC40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The Ethics Committee of the Lishui Hospital approved the use of human tissue samples (approval number: ECLSH-2019-168), and the experimental steps were conducted in accordance with the Declaration of Helsinki. The Institutional Animal Care and Use Committee of Lishui Hospital approved all animal care, use, and euthanasia.

Informed consent

All the patients provided signed informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Zhou, Y., Pan, Y. et al. Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast cancer by sponging microRNA-485-5p and consequently increasing expression of FLOT1 expression. Human Cell 34, 1517–1531 (2021). https://doi.org/10.1007/s13577-021-00554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00554-8

Keywords

Navigation