Skip to main content

Advertisement

Log in

The role of TNF-α induced protein 1 in the activation of pro-apoptotic proteins

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

It is known that Porphyromonas gingivalis/lipopolysaccharide (P. gingivalis/LPS) induces inflammatory diseases via TNF-α-mediated transcription factors. Our recent data shows that TNFAIP1 (TNF-α induced protein 1) is related to TNF-α. However, little is known regarding how TNFAIP1 is involved in the TNF-α-dependent pathway. We therefore focused on the biological function of TNFAIP1 and examined how TNFAIP1 mediates TNF-α and other genes. We found that TNF-α was upregulated and peaks before the upregulation of apoptotic genes such as Bad, Bcl-x, Caspase 3, Catalase, Claspin, Cytochromic, Ho-1/HMOX1/HSP32, or MCI-1 in our time course with TNFAIP1-treated cells. Our findings here may serve as the foundation for future studies linking regulation of TNFAIP1 and intervention of inflammatory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

P.g :

Porphyromonas gingivalis

LPS:

Lipopolysaccharide

TNFAIP1:

TNF-α induced protein 1

MAP:

Mitogen-activated protein

PI3K:

Phosphoinositide 3-kinase

NF-kB:

Nuclear factor kappa B

LITA:

LPS-induced TNF-α factor

References

  1. Liu H, Kai L, Du H, Wang X, Wang Y. LPS Inhibits Fatty Acid Absorption in Enterocytes through TNF-α Secreted by Macrophages. Cells. 2019;8:1626.

    Article  CAS  Google Scholar 

  2. Tang X, Fenton MJ, Amar S. Identification and functional characterization of a novel binding site on TNF-alpha promoter. Proc Natl Acad Sci USA. 2003;100:4096–101.

    Article  CAS  Google Scholar 

  3. Tang X, Marciano DL, Leeman SE, Amar S. LPS induces the interaction of a transcription factor, LPS-induced TNF-alpha factor, and STAT6(B) with effects on multiple cytokines. Proc Natl Acad Sci USA. 2005;102:5132–7.

    Article  CAS  Google Scholar 

  4. Zhang HJ, Wei QF, Wang SJ, Zhang HJ, Zhang XY, Geng Q, Cui YH, Wang XH. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int Immunopharmacol. 2017;50:283–90.

    Article  CAS  Google Scholar 

  5. Üçeyler N, Urlaub D, Mayer C, Uehlein S, Held M, Sommer C. Tumor necrosis factor-α links heat and inflammation with Fabry pain. Mol Genet Metab. 2019;127:200–6.

    Article  Google Scholar 

  6. Ardestani PM, Evans AK, Yi B, Nguyen T, Coutellier L, Shamloo M. Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer’s disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology. 2017;116:371–86.

    Article  CAS  Google Scholar 

  7. Xie Z, Wang Y, Huang J, Qian N, Shen G, Chen L. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW264.7 macrophages. Int J Biol Macromol. 2019;129:61–7.

    Article  CAS  Google Scholar 

  8. Ahmad R, Kochumon S, Chandy B, Shenouda S, Koshy M, Hasan A, Arefanian H, Al-Mulla F, Sindhu S. TNF-α Drives the CCL4 Expression in Human Monocytic Cells: Involvement of the SAPK/JNK and NF-κB Signaling Pathways. Cell Physiol Biochem. 2019;52:908–21.

    Article  CAS  Google Scholar 

  9. Lou N, Lennard Richard ML, Yu J, Kindy M, Zhang XK. The Fli-1 transcription factor is a critical regulator for controlling the expression of chemokine C-X-C motif ligand 2 (CXCL2). Mol Immunol. 2017;81:59–66.

    Article  CAS  Google Scholar 

  10. Krishnan TR, Velusamy P, Srinivasan A, Ganesan T, Mangaiah S, Narasimhan K, Chakrapani LNJT, Walter CR, Durairajan S, Nathakattur Saravanabavan S, Periandavan K. EGCG mediated downregulation of NF-AT and macrophage infiltration in experimental hepatic steatosis. Exp Gerontol. 2014;57:96–103.

    Article  CAS  Google Scholar 

  11. Subedi L, Lee JH, Yumnam S, Ji E, Kim SY. Anti-Inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation. Cells. 2019;8:194.

    Article  CAS  Google Scholar 

  12. Park T, Chen H, Kim HY. GPR110 (ADGRF1) mediates anti-inflammatory effects of N-docosahexaenoylethanolamine. J Neuroinflamm. 2019;16:225.

    Article  CAS  Google Scholar 

  13. Serrat N, Sebastian C, Pereira-Lopes S, Valverde-Estrella L, Lloberas J, Celada A. The response of secondary genes to lipopolysaccharides in macrophages depends on histone deacetylase and phosphorylation of C/EBPβ. J Immunol. 2014;192:418–26.

    Article  CAS  Google Scholar 

  14. Liu XW, Lu FG, Zhang GS, Wu XP, You Y, Ouyang CH, Yang DY. Proteomics to display tissue repair opposing injury response to lps-induced liver injury affiliations expand. World J Gastroenterol. 2004;10:2701–5.

    Article  CAS  Google Scholar 

  15. He D, Tan J, Zhang J. miR-137 attenuates Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in Neuro2a cells. Biochem Biophys Res Commun. 2017;490:941–7.

    Article  CAS  Google Scholar 

  16. Zhang P, Guo Z, Hu R, He X, Jiao X, Zhu X. Interaction between microRNA-181a and TNFAIP1 regulates pancreatic cancer proliferation and migration. Tumour Biol. 2015;36:9693–701.

    Article  CAS  Google Scholar 

  17. Harada K, Ohira S, Isse K, Ozaki S, Zen Y, Sato Y, Nakanuma Y. Lipopolysaccharide Activates Nuclear Factor-KappaB through Toll-Like Receptors and Related Molecules in Cultured Biliary Epithelial Cells. Nature. 2003;83:1657–67.

    CAS  Google Scholar 

  18. Tang X, Metzger D, Leeman S, Amar S. LPS-induced TNF-α factor (LITAF)-deficient mice express reduced LPS-induced cytokine: evidence for LITAF-dependent LPS signaling pathways. PNAS103. 2006;37:13777–82.

    Article  Google Scholar 

  19. Kryvdiuk I, Minchenko D, Hlushchak N, Ratushna O, Karbovskyi L, Minchenko O. Ingibition of IRE1 Modifies effect of glucose deprivation on the expression of TNFα-related genes in U87 glioma cells. Ukr Biochem J. 2015;87:36–51.

    Article  CAS  Google Scholar 

  20. Tang X, Aljahdali B, Alasiri M, Bamashmous A, Cao F, Dibart S, Salih E. A method for high transfection efficiency in THP-1 suspension cells without PMA treatment. Anal Biochem. 2018;544:93–7.

    Article  CAS  Google Scholar 

  21. Jain N, Sudhakar Ch, Swarup G. Tumor necrosis factor-alpha-induced caspase-1 gene expression. FEBS J. 2007;274:4396–407.

    Article  CAS  Google Scholar 

  22. Guo F, Yuan Y. Tumor necrosis factor alpha-induced proteins in malignant tumors: progress and prospects. Onco Targets Ther. 2020;13:3303–18.

    Article  CAS  Google Scholar 

  23. Yang J-B, Quan J-H, Kim Y-E, Rhee Y-E, Kang B-H, et al. Involvement of PI3K/AKT and MAPK pathways for TNF-α production in siha cervical mucosal epithelial cells infected with Trichomonas vaginalis. Korean J Parasitol. 2015;53(4):371–7.

    Article  CAS  Google Scholar 

  24. Liu N, Zhanyang Y, Xun Y, Li M, Peng X, et al. TNFAIP1 contributes to the neurotoxicity induced by Aβ25–35 in Neuro2a cells. BMC Neurosci. 2016;17:51.

    Article  Google Scholar 

  25. Madhu Sudhana Saddala & Hu Huang. Identification of novel inhibitors for TNFα, TNFR1 and TNFα-TNFR1 complex using pharmacophore-based approaches. J Transl Med. 2019;17:215.

    Article  Google Scholar 

  26. Tang X, Metzger D, Leeman S, Amar S. LPS-induced TNF-alpha factor (LITAF)-deficient mice express reduced LPS-induced cytokine: Evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci USA. 2006;103:13777–82.

    Article  CAS  Google Scholar 

  27. Yi J, Zhu M, Qiu F, Zhou Y, Shu P, Liu N, Wei C, Xiang S. TNFAIP1 mediates formaldehyde-induced neurotoxicity by inhibiting the Akt/CREB pathway in N2a cells. Neurotox Res. 2020. https://doi.org/10.1007/s12640-020-00199-9.

    Article  PubMed  Google Scholar 

  28. Zhu Y, Yao Z, Wu Z, Mei Y, Wu M. Role of tumor necrosis factor alpha-induced protein 1 in paclitaxel resistance. Oncogene. 2014;33:3246–55.

    Article  CAS  Google Scholar 

  29. Tang X, Cao F, Ma W, Tang Y, Aljahdali B, Alasir M, Salih E, Dibart S. Cancer cells resist hyperthermia due to its obstructed activation of caspase 3. Rep Pract Oncol Radiother. 2020;25:323–6.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

XT, MS, and SD designed this study; XT, TT, and BA performed experiments; XT, TT, and BA collected and further analyzed data; XT and TT drafted the manuscript; all authors revised and approved this manuscript.

Corresponding author

Correspondence to Xiaoren Tang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Tangkham, T., Aljahdali, B. et al. The role of TNF-α induced protein 1 in the activation of pro-apoptotic proteins. Human Cell 34, 1123–1129 (2021). https://doi.org/10.1007/s13577-021-00529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00529-9

Keywords

Navigation