Skip to main content

Advertisement

Log in

Current status and perspectives of patient-derived rare cancer models

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Malignancies with extremely low incidences, such as less than 6 per 100,000 people annually, are defined as rare cancers. Approximately 200 malignancies are classified in this category, therefore the total number of patients with rare cancers is greater than that of patients with any single common cancer. However, because of the small numbers of patients, novel therapies have not been developed for individual rare cancers, and clinical outcomes remain dismal. Patient-derived cancer models are indispensable for both basic and pre-clinical studies, and their roles will increase in the era of post-genome medicine. Although patient-derived cancer models have long been used in oncology, they are not well developed for rare cancers. In the context of sarcoma, the presently available cell lines and xenograft models are limited and do not satisfy the needs of research. Indeed, the lack of effective therapies for rare cancers might be attributable to the paucity of adequate patient-derived cancer models for pre-clinical studies. To facilitate the establishment and availability of patient-derived rare cancer models, we need to create effective methods for model establishment, share the valuable clinical samples and established models, and implement guidelines to record the clinical data of donor patients and original tumors. Patient-derived rare cancer models are a public resource, and they should not be used exclusively but should rather be shared among the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RARECANCERNet. Information Network on Rare Cancers. [updated]. Available from: https://www.rarecarenet.eu/rarecarenet/. Accessed 27 Apr 2020

  2. Gatta G, Capocaccia R, Botta L, et al. Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol. 2017;18:1022–39.

    Article  PubMed  Google Scholar 

  3. Tamaki T, Dong Y, Ohno Y, Sobue T, Nishimoto H, Shibata A. The burden of rare cancer in Japan: application of the RARECARE definition. Cancer Epidemiol. 2014;38:490–5.

    Article  PubMed  Google Scholar 

  4. Gatta G, van der Zwan JM, Casali PG, et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer. 2011;47:2493–511.

    Article  PubMed  Google Scholar 

  5. Ray-Coquard I, Thiesse P, Ranchere-Vince D, et al. Conformity to clinical practice guidelines, multidisciplinary management and outcome of treatment for soft tissue sarcomas. Ann Oncol. 2004;15:307–15.

    Article  CAS  PubMed  Google Scholar 

  6. Gatta G, Capocaccia R, Trama A, Martinez-Garcia C. The burden of rare cancers in Europe. Adv Exp Med Biol. 2010;686:285–303.

    Article  PubMed  Google Scholar 

  7. Casali PG, Bruzzi P, Bogaerts J, Blay JY. Rare Cancers Europe (RCE) methodological recommendations for clinical studies in rare cancers: a European consensus position paper. Ann Oncol. 2015;26:300–6.

    Article  CAS  PubMed  Google Scholar 

  8. Bogaerts J, Sydes MR, Keat N, et al. Clinical trial designs for rare diseases: studies developed and discussed by the International Rare Cancers Initiative. Eur J Cancer. 2015;51:271–81.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boyd N, Dancey JE, Gilks CB, Huntsman DG. Rare cancers: a sea of opportunity. Lancet Oncol. 2016;17:e52–e61.

    Article  PubMed  Google Scholar 

  10. Blay JY, Coindre JM, Ducimetiere F, Ray-Coquard I. The value of research collaborations and consortia in rare cancers. Lancet Oncol. 2016;17:e62–e6969.

    Article  PubMed  Google Scholar 

  11. Billingham L, Malottki K, Steven N. Research methods to change clinical practice for patients with rare cancers. Lancet Oncol. 2016;17:e70–e80.

    Article  PubMed  Google Scholar 

  12. AACR Project GENIE. Powering precision medicine through an international consortium. Cancer Discov. 2017;7:818–31.

    Article  Google Scholar 

  13. Corsello SM, Bittker JA, Liu Z, et al. The drug repurposing hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hudson TJ, Anderson W, Artez A, et al. International network of cancer genome projects. Nature. 2010;464:993–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  16. Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Article  PubMed  CAS  Google Scholar 

  17. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  CAS  Google Scholar 

  18. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  CAS  PubMed  Google Scholar 

  19. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol. 2005;23:2513–20.

    Article  CAS  PubMed  Google Scholar 

  21. Patani N, Martin LA, Dowsett M. Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer. 2013;133:1–13.

    Article  CAS  PubMed  Google Scholar 

  22. Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zia MI, Siu LL, Pond GR, Chen EX. Comparison of outcomes of phase II studies and subsequent randomized control studies using identical chemotherapeutic regimens. J Clin Oncol. 2005;23:6982–91.

    Article  CAS  PubMed  Google Scholar 

  25. Chan JK, Ueda SM, Sugiyama VE, et al. Analysis of phase II studies on targeted agents and subsequent phase III trials: what are the predictors for success? J Clin Oncol. 2008;26:1511–8.

    Article  PubMed  Google Scholar 

  26. Maitland ML, Hudoba C, Snider KL, Ratain MJ. Analysis of the yield of phase II combination therapy trials in medical oncology. Clin Cancer Res. 2010;16:5296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nottage M, Siu LL. Principles of clinical trial design. J Clin Oncol. 2002;20:42s–s4646.

    Article  PubMed  Google Scholar 

  28. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.

    Article  CAS  PubMed  Google Scholar 

  29. Aitken M, Kleinrock M, Simorellis A, Nass D (2018) Global Oncology Trends 2018: Innovation, Expansion and Disruption. IQVIA Institute for Human Data Science

  30. Marquart J, Chen EY, Prasad V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 2018;4:1093–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. New Engl J Med. 2015;373:726–36.

    Article  CAS  PubMed  Google Scholar 

  33. Kopetz S, Desai J, Chan E, et al. Phase II pilot study of vemurafenib in patients with metastatic braf-mutated colorectal cancer. J Clin Oncol. 2015;33:4032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharifnia T, Hong AL, Painter CA, Boehm JS. Emerging opportunities for target discovery in rare cancers. Cell Chem Biol. 2017;24:1075–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.

    Article  CAS  PubMed  Google Scholar 

  36. Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2:227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao M, Tian F, Mariadason JM, et al. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents. Clin Cancer Res. 2013;19:657–67.

    Article  CAS  PubMed  Google Scholar 

  38. Tsimberidou AM, Wen S, Hong DS, et al. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin Cancer Res. 2014;20:4827–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andre F, Bachelot T, Commo F, et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 2014;15:267–74.

    Article  CAS  PubMed  Google Scholar 

  40. Vansteenkiste JF, Canon JL, De Braud F, et al. Safety and Efficacy of Buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the Phase II BASALT-1 study. J Thorac Oncol. 2015;10:1319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006;6:593–602.

    Article  CAS  PubMed  Google Scholar 

  42. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10:241–53.

    Article  CAS  PubMed  Google Scholar 

  43. Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166:740–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holbeck SL, Collins JM, Doroshow JH. Analysis of food and drug administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol Cancer Ther. 2010;9:1451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basu A, Bodycombe NE, Cheah JH, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013;154:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.

    Article  CAS  PubMed  Google Scholar 

  48. Boehm JS, Golub TR. An ecosystem of cancer cell line factories to support a cancer dependency map. Nat Rev Genet. 2015;16:373–4.

    Article  CAS  PubMed  Google Scholar 

  49. Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell. 2017;170(564–76):e16.

    Google Scholar 

  50. McDonald ER 3rd, de Weck A, Schlabach MR, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170(577–92):e10.

    Google Scholar 

  51. Lin A, Giuliano CJ, Palladino A, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med. 2019;11:eaaw8412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gillet JP, Calcagno AM, Varma S, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108:18708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hausser HJ, Brenner RE. Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun. 2005;333:216–22.

    Article  CAS  PubMed  Google Scholar 

  54. Ben-David U, Siranosian B, Ha G, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560:325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee JK, Liu Z, Sa JK, et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet. 2018;50:1399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.

    Article  PubMed  CAS  Google Scholar 

  57. Calles A, Rubio-Viqueira B, Hidalgo M. Primary human non-small cell lung and pancreatic tumorgraft models–utility and applications in drug discovery and tumor biology. Curr Protoc Pharmacol. 2013;61:14–26.

    Google Scholar 

  58. Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15:451–2.

    Article  CAS  PubMed  Google Scholar 

  60. Fiebig HH, Neumann HA, Henss H, Koch H, Kaiser D, Arnold H. Development of three human small cell lung cancer models in nude mice. Recent Results Cancer Res. 1985;97:77–86.

    Article  CAS  PubMed  Google Scholar 

  61. Izumchenko E, Paz K, Ciznadija D, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 2017;28:2595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.

    Article  CAS  PubMed  Google Scholar 

  63. Townsend EC, Murakami MA, Christodoulou A, et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell. 2016;29:574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bruna A, Rueda OM, Greenwood W, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 2016;167(260–74):e22.

    Google Scholar 

  65. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov. 2018;8:1358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eirew P, Steif A, Khattra J, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518:422–6.

    Article  CAS  PubMed  Google Scholar 

  67. Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Whiteford CC, Bilke S, Greer BT, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67:32–40.

    Article  CAS  PubMed  Google Scholar 

  69. Byrne AT, Alferez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17:254–68.

    Article  CAS  PubMed  Google Scholar 

  70. Collins AT, Lang SH. A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ. 2018;6:e5981.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    Article  CAS  PubMed  Google Scholar 

  72. Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 2017;24:1092–100.

    Article  CAS  PubMed  Google Scholar 

  73. van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 2018;23(882–97):e11.

    Google Scholar 

  75. Seino T, Kawasaki S, Shimokawa M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22(454–67):e6.

    Google Scholar 

  76. Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(373–86):e10.

    Google Scholar 

  77. Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(515–28):e17.

    Google Scholar 

  78. Beshiri ML, Tice CM, Tran C, et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 2018;24:4332–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calandrini C, Schutgens F, Oka R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(188–204):e22.

    Google Scholar 

  81. Tiriac H, Belleau P, Engle DD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 2018;8:1112–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11:eaay2574.

    Article  CAS  PubMed  Google Scholar 

  83. Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(1972–88):e16.

    Google Scholar 

  84. Kondo J, Endo H, Okuyama H, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA. 2011;108:6235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Komatsu A, Matsumoto K, Saito T, Muto M, Tamanoi F. Patient derived chicken egg tumor model (pdce model): current status and critical issues. Cells. 2019;8:440.

    Article  CAS  PubMed Central  Google Scholar 

  86. Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer. 2020;20:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kato S, Kurasaki K, Ikeda S, Kurzrock R. Rare tumor clinic: the university of california san diego moores cancer center experience with a precision therapy approach. Oncologist. 2018;23:171–8.

    Article  CAS  PubMed  Google Scholar 

  88. Miller RW, Young JL Jr, Novakovic B. Childhood cancer. Cancer. 1995;75:395–405.

    Article  CAS  PubMed  Google Scholar 

  89. Siegel RL, Miller KD, Jemal A. Cancer statistics 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  90. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. WHO classification of tumours of soft tissue and bone. Geneva: WHO Press; 2013.

    Google Scholar 

  91. Borden EC, Baker LH, Bell RS, et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res. 2003;9:1941–56.

    PubMed  Google Scholar 

  92. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94.

    Article  CAS  PubMed  Google Scholar 

  93. Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer. 2011;11:541–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 2001;358:1421–3.

    Article  PubMed  Google Scholar 

  95. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  CAS  PubMed  Google Scholar 

  96. Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–32.

    Article  CAS  PubMed  Google Scholar 

  97. van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379:1879–86.

    Article  PubMed  CAS  Google Scholar 

  98. Nakamura T, Matsumine A, Kawai A, et al. The clinical outcome of pazopanib treatment in Japanese patients with relapsed soft tissue sarcoma: a Japanese Musculoskeletal Oncology Group (JMOG) study. Cancer. 2016;122:1408–16.

    Article  CAS  PubMed  Google Scholar 

  99. Demetri GD, von Mehren M, Jones RL, et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol. 2016;34:786–93.

    Article  CAS  PubMed  Google Scholar 

  100. Schoffski P, Chawla S, Maki RG, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet. 2016;387:1629–37.

    Article  CAS  PubMed  Google Scholar 

  101. Wilding CP, Elms ML, Judson I, Tan AC, Jones RL, Huang PH. The landscape of tyrosine kinase inhibitors in sarcomas: looking beyond pazopanib. Expert Rev Anticancer Ther. 2019;19:971–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verweij J. Soft tissue sarcoma trials: one size no longer fits all. J Clin Oncol. 2009;27:3085–7.

    Article  PubMed  Google Scholar 

  103. Teicher BA, Polley E, Kunkel M, et al. Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression. Mol Cancer Ther. 2015;14:2452–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brodin BA, Wennerberg K, Lidbrink E, et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer. 2019;120:435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stebbing J, Paz K, Schwartz GK, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 2014;120:2006–155.

    Article  PubMed  Google Scholar 

  106. Nanni P, Landuzzi L, Manara MC, et al. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep. 2019;9:12174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hattori E, Oyama R, Kondo T. Systematic review of the current status of human sarcoma cell lines. Cells. 2019;8:157.

    Article  CAS  PubMed Central  Google Scholar 

  108. Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29:25–38.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Conte N, Mason JC, Halmagyi C, et al. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 2019;47:D1073–D10791079.

    Article  CAS  PubMed  Google Scholar 

  110. Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. Embo j. 2019;38:e101654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Giard DJ, Aaronson SA, Todaro GJ, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.

    Article  CAS  PubMed  Google Scholar 

  112. Lu W, Chao T, Ruiqi C, Juan S, Zhihong L. Patient-derived xenograft models in musculoskeletal malignancies. J Transl Med. 2018;16:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu X, Krawczyk E, Suprynowicz FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc. 2017;12:439–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Pretlow TG, Delmoro CM, Dilley GG, Spadafora CG, Pretlow TP. Transplantation of human prostatic carcinoma into nude mice in Matrigel. Cancer Res. 1991;51:3814–7.

    CAS  PubMed  Google Scholar 

  115. Hoon Tan P, Ellis I, Allison K, et al. (2020) WHO Classification of Tumours Editorial Board. Breast Tumours. World Health Organization; 2019.

  116. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31:1039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Oyama R, Kito F, Takahashi M, et al. Establishment and characterization of patient-derived cancer models of malignant peripheral nerve sheath tumors. Cancer Cell Int. 2020;20:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sugawara M, Kobayashi E, Asano N, Yoshida A, Kawai A. Malignant peripheral nerve sheath tumor of the femur: a rare diagnosis supported by complete immunohistochemical loss of H3K27me3. Int J Surg Pathol. 2017;25:629–34.

    Article  PubMed  Google Scholar 

  119. Oyama R, Takahashi M, Kito F, et al. Esablishment and characterization of patient-derived pleomorphic rhabdomyosarcoma models. Tiss Cult Res Cimmun. 2019;38:1–12.

    Google Scholar 

  120. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-ssRMS1-C1: a novel patient-derived spindle-cell/sclerosing rhabdomyosarcoma cell line. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00359-1.

    Article  PubMed  Google Scholar 

  121. Kito F, Oyama R, Takai Y, et al. Establishment and characterization of the NCC-SS1-C1 synovial sarcoma cell line. Hum Cell. 2018;31:167–74.

    Article  CAS  PubMed  Google Scholar 

  122. Oyama R, Kito F, Sakumoto M, et al. Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1. Vitro Cell Dev Biol Anim. 2018;54:392–9.

    Article  CAS  Google Scholar 

  123. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-SS3-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00354-6.

    Article  PubMed  Google Scholar 

  124. Oyama R, Kito F, Qiao Z, et al. Establishment of novel patient-derived models of dermatofibrosarcoma protuberans: two cell lines, NCC-DFSP1-C1 and NCC-DFSP2-C1. Vitro Cell Dev Biol Anim. 2019;55:62–73.

    Article  CAS  Google Scholar 

  125. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-DFSP3-C1: a novel patient-derived dermatofibrosarcoma protuberans cell line. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00365-3.

    Article  PubMed  Google Scholar 

  126. Takai Y, Oyama R, Kito F, et al. Establishement and characterization of cell lined of undifferentiated pleomorphic sarcoma. Tiss Cult Res Comm. 2017;36:41–8.

    Google Scholar 

  127. Kito F, Oyama R, Takahashi M, et al. Establishemnt and characterization of a patient-derived cancer model of undifferentiated pleomorphic sarcoma. Tiss Cult Res Cimmun. 2018;37:133–45.

    Google Scholar 

  128. Oyama R, Kito F, Sakumoto M, et al. Establishment and proteomic characterization of a novel cell line, NCC-UPS2-C1, derived from a patient with undifferentiated pleomorphic sarcoma. Vitro Cell Dev Biol Anim. 2018;54:257–63.

    Article  CAS  Google Scholar 

  129. Oyama R, Takahashi M, Yoshida A, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Scientific reports. 2017;7:4712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-CDS2-C1: a novel patient-derived cell line of CIC-DUX4 sarcoma. Hum Cell. 2020;33:427–36.

    Article  PubMed  Google Scholar 

  131. Kito F, Oyama R, Sakumoto M, et al. Establishment and characterization of novel patient-derived osteosarcoma xenograft and cell line. Vitro Cell Dev Biol Anim. 2018;54:528–36.

    Article  CAS  Google Scholar 

  132. Kito F, Oyama R, Noguchi R, et al. Establishment and characterization of novel patient-derived extraskeletal osteosarcoma cell line NCC-ESOS1-C1. Hum Cell. 2020;33:283–90.

    Article  CAS  PubMed  Google Scholar 

  133. Oyama R, Kito F, Takahashi M, et al. Establishment and characterization of a novel dedifferentiated chondrosarcoma cell line, NCC-dCS1-C1. Hum Cell. 2019;32:202–13.

    Article  CAS  PubMed  Google Scholar 

  134. Sakumoto M, Oyama R, Takahashi M, et al. Establishment and proteomic characterization of patient-derived clear cell sarcoma xenografts and cell lines. Vitro Cell Dev Biol Anim. 2018;54:163–76.

    Article  CAS  Google Scholar 

  135. Sakumoto M, Takahashi M, Oyama R, et al. Establishment and proteomic characterization of NCC-LMS1-C1, a novel cell line of primary leiomyosarcoma of the bone. Jpn J Clin Oncol. 2017;47:954–61.

    Article  PubMed  Google Scholar 

  136. Oyama R, Takahashi M, Kito F, et al. Establishment and characterization of patient-derived xenograft and its cell line of primary leiomyosarcoma of bone. Vitro Cell Dev Biol Anim. 2018;54:458–67.

    Article  Google Scholar 

  137. Oyama R, Kito F, Qiao Z, et al. Establishment of a novel patient-derived Ewing's sarcoma cell line, NCC-ES1-C1. In vitro Cell Dev Biol Anim. 2018;54:770–8.

    Article  CAS  PubMed  Google Scholar 

  138. Kito F, Oyama R, Sakumoto M, et al. Establishment and characterization of a novel cell line, NCC-MFS1-C1, derived from a patient with myxofibrosarcoma. Hum Cell. 2019;32:214–22.

    Article  CAS  PubMed  Google Scholar 

  139. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. (2020) Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma. Hum Cell.

Download references

Acknowledgements

This research was supported by AMED under Grant Number 20ck0106537h0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Kondo.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, T. Current status and perspectives of patient-derived rare cancer models. Human Cell 33, 919–929 (2020). https://doi.org/10.1007/s13577-020-00391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00391-1

Keywords

Navigation