Skip to main content

Advertisement

Log in

LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Temozolomide (TMZ) is one of the most common drugs selected for glioma chemotherapy, but the therapeutic effect of glioma treatment is usually limited due to its resistance. Long non-coding RNA (lncRNA) is gradually found to be a vital regulator in numerous physiological and pathological processes. Lately, it was revealed that LINC00174 could promote CRC cell growth. However, the function and potential regulatory manner of LINC00174 in glioma remain unclear. Our results demonstrated that the expression level of LINC00174 was higher in glioma tissues, and LINC00174 down-regulation could remarkably prevent cell proliferation and promote cell apoptosis in both glioma cells and TMZ-resistant glioma cells. Mechanistic studies revealed that LINC00174 can sponge microRNA-138-5p (miR-138-5p) and down-regulate its expression, thereby up-regulating the protein level of miR-138-5p’s target, sex-determining region Y (SRY)-box9 protein (SOX9). Additionally, in vivo experiments revealed that LINC00174 shRNA can serve as a tumor suppressor through down-regulating SOX9 in glioma. In this study, a novel established regulatory way of LINC00174/miR-138-5p/SOX9 axis was systematically studied, which may provide a new manner for glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. https://doi.org/10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503. https://doi.org/10.1038/ncpneuro0289(quiz 1 p following 16).

    Article  PubMed  Google Scholar 

  3. Milano MT, Johnson MD, Sul J, Mohile NA, Korones DN, Okunieff P, et al. Primary spinal cord glioma: a surveillance, epidemiology, and end results database study. J Neurooncol. 2010;98(1):83–92. https://doi.org/10.1007/s11060-009-0054-7.

    Article  PubMed  Google Scholar 

  4. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11(4):448–57. https://doi.org/10.1038/sj.cdd.4401359.

    Article  CAS  PubMed  Google Scholar 

  5. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165–72. https://doi.org/10.1016/j.cub.2006.11.033.

    Article  CAS  PubMed  Google Scholar 

  6. Stupp R, van den Bent MJ, Hegi ME. Optimal role of temozolomide in the treatment of malignant gliomas. Curr Neurol Neurosci Rep. 2005;5(3):198–206.

    Article  CAS  Google Scholar 

  7. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(Spec No 1):R17–29. https://doi.org/10.1093/hmg/ddl046.

    Article  CAS  PubMed  Google Scholar 

  8. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81. https://doi.org/10.1158/0008-5472.CAN-16-2634.

    Article  CAS  PubMed  Google Scholar 

  9. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61. https://doi.org/10.1038/nm.3981.

    Article  CAS  PubMed  Google Scholar 

  10. Cui B, Li B, Liu Q, Cui Y. lncRNA CCAT1 promotes glioma tumorigenesis by sponging miR-181b. J Cell Biochem. 2017;118(12):4548–57. https://doi.org/10.1002/jcb.26116.

    Article  CAS  PubMed  Google Scholar 

  11. Fu C, Li D, Zhang X, Liu N, Chi G, Jin X. LncRNA PVT1 facilitates tumorigenesis and progression of glioma via regulation of MiR-128-3p/GREM1 axis and BMP signaling pathway. Neurotherapeutics. 2018;15(4):1139–57. https://doi.org/10.1007/s13311-018-0649-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Wei DL, Wan L, Yan SF, Sun YH. Highly expressed lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2017;482(4):1219–25. https://doi.org/10.1016/j.bbrc.2016.12.016.

    Article  CAS  PubMed  Google Scholar 

  13. Shen Y, Gao X, Tan W, Xu T. STAT1-mediated upregulation of lncRNA LINC00174 functions a ceRNA for miR-1910-3p to facilitate colorectal carcinoma progression through regulation of TAZ. Gene. 2018;666:64–71. https://doi.org/10.1016/j.gene.2018.05.001.

    Article  CAS  PubMed  Google Scholar 

  14. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22. https://doi.org/10.1038/nrd.2016.246.

    Article  CAS  PubMed  Google Scholar 

  15. Yang L, Li C, Liang F, Fan Y, Zhang S. MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed Pharmacother. 2017;95:1759–64. https://doi.org/10.1016/j.biopha.2017.08.088.

    Article  CAS  PubMed  Google Scholar 

  16. Qin Y, Chen W, Liu B, Zhou L, Deng L, Niu W, et al. MiR-200c inhibits the tumor progression of glioma via targeting moesin. Theranostics. 2017;7(6):1663–73. https://doi.org/10.7150/thno.17886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng Y, Lu X, Xu L, Chen Z, Li Q, Yuan J. MicroRNA-675 promotes glioma cell proliferation and motility by negatively regulating retinoblastoma 1. Hum Pathol. 2017;69:63–71. https://doi.org/10.1016/j.humpath.2017.09.006.

    Article  CAS  PubMed  Google Scholar 

  18. Gao Y, Fan X, Li W, Ping W, Deng Y, Fu X. miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun. 2014;446(1):179–86. https://doi.org/10.1016/j.bbrc.2014.02.073.

    Article  CAS  PubMed  Google Scholar 

  19. Yang R, Liu M, Liang H, Guo S, Guo X, Yuan M, et al. miR-138-5p contributes to cell proliferation and invasion by targeting surviving in bladder cancer cells. Mol Cancer. 2016;15(1):82. https://doi.org/10.1186/s12943-016-0569-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu S, Huang D, Yin D, Li F, Li X, Kung HF, et al. Suppression of tumorigenicity by microRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme. Biochim Biophys Acta. 2013;1832(10):1697–707. https://doi.org/10.1016/j.bbadis.2013.05.015.

    Article  CAS  PubMed  Google Scholar 

  21. He Z, Ruan X, Liu X, Zheng J, Liu Y, Liu L, et al. FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in glioma. J Exp Clin Cancer Res. 2019;38(1):65. https://doi.org/10.1186/s13046-019-1065-7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea AM, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7(11):12937–50. https://doi.org/10.18632/oncotarget.7346.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kadaja M, Keyes BE, Lin M, Pasolli HA, Genander M, Polak L, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev. 2014;28(4):328–41. https://doi.org/10.1101/gad.233247.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vidal VP, Ortonne N, Schedl A. SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J Cutan Pathol. 2008;35(4):373–9. https://doi.org/10.1111/j.1600-0560.2007.00815.x.

    Article  PubMed  Google Scholar 

  25. Wang L, He S, Yuan J, Mao X, Cao Y, Zong J, et al. Oncogenic role of SOX9 expression in human malignant glioma. Med Oncol. 2012;29(5):3484–90. https://doi.org/10.1007/s12032-012-0267-z.

    Article  CAS  PubMed  Google Scholar 

  26. Gao J, Zhang JY, Li YH, Ren F. Decreased expression of SOX9 indicates a better prognosis and inhibits the growth of glioma cells by inducing cell cycle arrest. Int J Clin Exp Pathol. 2015;8(9):10130–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Liu Z, Jiang B, Peng R, Ma Z, Lu J. SOX9 overexpression promotes glioma metastasis via Wnt/beta-catenin signaling. Cell Biochem Biophys. 2015;73(1):205–12. https://doi.org/10.1007/s12013-015-0647-z.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Xu X, Liu N, Cheng Y, Jin W, Zhang P, et al. SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance. Oncotarget. 2018;9(1):192–204. https://doi.org/10.18632/oncotarget.22773.

    Article  PubMed  Google Scholar 

  29. Han J, Chen Q. MiR-16 modulate temozolomide resistance by regulating BCL-2 in human glioma cells. Int J Clin Exp Pathol. 2015;8(10):12698–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu Y, Liu Q, Zhang M, Yan Y, Yu H, Ge L. MicroRNA-362-3p attenuates motor deficit following spinal cord injury via targeting paired box gene 2. J Integr Neurosci. 2019;18(1):57–64. https://doi.org/10.31083/j.jin.2019.01.12.

    Article  PubMed  Google Scholar 

  31. Bierhoff H. Analysis of lncRNA-protein interactions by RNA-protein pull-down assays and RNA immunoprecipitation (RIP). Methods Mol Biol. 2018;1686:241–50. https://doi.org/10.1007/978-1-4939-7371-2_17.

    Article  CAS  PubMed  Google Scholar 

  32. Worlein JM, Baker K, Bloomsmith M, Coleman K, Koban TL. The eighth edition of the guide for the care and use of laboratory animals. Am J Primatol. 2011;73:98.

    Google Scholar 

  33. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4. https://doi.org/10.1056/NEJM200011093431901.

    Article  CAS  PubMed  Google Scholar 

  34. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93(18):9821–6. https://doi.org/10.1073/pnas.93.18.9821.

    Article  CAS  PubMed  Google Scholar 

  35. Xu C, He T, Li Z, Liu H, Ding B. Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells. Biomed Pharmacother. 2017;95:1504–13. https://doi.org/10.1016/j.biopha.2017.08.097.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, et al. CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther. 2016;24(7):1199–215. https://doi.org/10.1038/mt.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan J, Xu C, Li Y, Tang B, Xie S, Hong T, et al. Long non-coding RNA LINC00526 represses glioma progression via forming a double negative feedback loop with AXL. J Cell Mol Med. 2019;23(8):5518–31. https://doi.org/10.1111/jcmm.14435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu D, Gu L, Li Z, Jin W, Lu Q, Ren T. MiR-138-5p suppresses lung adenocarcinoma cell epithelial-mesenchymal transition, proliferation and metastasis by targeting ZEB2. Pathol Res Pract. 2019;215(5):861–72. https://doi.org/10.1016/j.prp.2019.01.029.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao L, Yu H, Yi S, Peng X, Su P, Xiao Z, et al. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget. 2016;7(29):45370–84. https://doi.org/10.18632/oncotarget.9659.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tian S, Guo X, Yu C, Sun C, Jiang J. miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1. Oncotarget. 2017;8(7):11071–82. https://doi.org/10.18632/oncotarget.14360.

    Article  PubMed  Google Scholar 

  41. Zhu J, Shi H, Liu H, Wang X, Li F. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget. 2017;8(39):65253–64. https://doi.org/10.18632/oncotarget.18224.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao Y, Zhao L, Li J, Zhong L. Silencing of long noncoding RNA RP11-476D10.1 enhances apoptosis and autophagy while inhibiting proliferation of papillary thyroid carcinoma cells via microRNA-138-5p-dependent inhibition of LRRK2. J Cell Physiol. 2019;10:15. https://doi.org/10.1002/jcp.28702.

    Article  CAS  Google Scholar 

  43. Ding J, Yeh CR, Sun Y, Lin C, Chou J, Ou Z, et al. Estrogen receptor beta promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene. 2018;37(37):5037–53. https://doi.org/10.1038/s41388-018-0175-6.

    Article  CAS  PubMed  Google Scholar 

  44. Bai Y, Zhang G, Chu H, Li P, Li J. The positive feedback loop of lncRNA DANCR/miR-138/Sox4 facilitates malignancy in non-small cell lung cancer. Am J Cancer Res. 2019;9(2):270–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Higashihara T, Yoshitomi H, Nakata Y, Kagawa S, Takano S, Shimizu H, et al. Sex determining region Y Box 9 Induces chemoresistance in pancreatic cancer cells by induction of putative cancer stem cell characteristics and its high expression predicts poor prognosis. Pancreas. 2017;46(10):1296–304. https://doi.org/10.1097/MPA.0000000000000945.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan X, Li J, Coulouarn C, Lin T, Sulpice L, Bergeat D, et al. SOX9 expression decreases survival of patients with intrahepatic cholangiocarcinoma by conferring chemoresistance. Br J Cancer. 2018;119(11):1358–66. https://doi.org/10.1038/s41416-018-0338-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue M, Li G, Sun P, Zhang D, Fang X, Li W. MicroRNA-613 induces the sensitivity of gastric cancer cells to cisplatin through targeting SOX9 expression. Am J Transl Res. 2019;11(2):885–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Xue X, Hong H, Qin M, Zhou J, Sun Q, et al. Upregulation of microRNA-524-5p enhances the cisplatin sensitivity of gastric cancer cells by modulating proliferation and metastasis via targeting SOX9. Oncotarget. 2017;8(1):574–82. https://doi.org/10.18632/oncotarget.13479.

    Article  PubMed  Google Scholar 

  49. Xiao S, Li Y, Pan Q, Ye M, He S, Tian Q, et al. MiR-34c/SOX9 axis regulates the chemoresistance of ovarian cancer cell to cisplatin-based chemotherapy. J Cell Biochem. 2019;120(3):2940–53. https://doi.org/10.1002/jcb.26865.

    Article  CAS  PubMed  Google Scholar 

  50. Liu N, Zhang L, Wang Z, Cheng Y, Zhang P, Wang X, et al. MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget. 2017;8(12):19244–54. https://doi.org/10.18632/oncotarget.13706.

    Article  PubMed  Google Scholar 

  51. Liu X, Wang H, Zhu Z, Ye Y, Mao H, Zhang S. MicroRNA-105 targets SOX9 and inhibits human glioma cell progression. FEBS Lett. 2016;590(23):4329–42. https://doi.org/10.1002/1873-3468.12458.

    Article  CAS  PubMed  Google Scholar 

  52. Liu S, Li X, Zhuang S. miR-30c impedes glioblastoma cell proliferation and migration by targeting SOX9. Oncol Res. 2019;27(2):165–71. https://doi.org/10.3727/096504018X15193506006164.

    Article  PubMed  Google Scholar 

  53. Rani SB, Rathod SS, Karthik S, Kaur N, Muzumdar D, Shiras AS. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncol. 2013;15(10):1302–16. https://doi.org/10.1093/neuonc/not090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by The fund of Shaanxi Key Laboratory of Brain Disorders (Grant No. 18NBZD01).

Author information

Authors and Affiliations

Authors

Contributions

MSC conceived and designed the experiments, FLW and JMS analyzed and interpreted the results of the experiments, HKZ and BL performed the experiments.

Corresponding author

Correspondence to Mingsheng Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests, and all authors should confirm its accuracy. The authors state that there are no conflicts of interest to disclose.

Ethical approval

The animal use protocol listed below has been reviewed and approved by the Animal Ethical and Welfare Committee. Approval No. 2019010.

Informed consent

Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13577_2019_281_MOESM1_ESM.jpg

Figure S1 (A) Relative MGMT methylation status in the established TMZ-resistant sublines of U251 and U87, and in parent U251 and U87 cell lines, as determined using methylation-specific polymerase chain reaction. (B) Relative proliferation of LN229 cells after transfected with sh-LINC00174 or sh-NC and treated with different doses of TMZ were, respectively, determined by CCK-8. TMZ treatment significantly decreased cell proliferation in a dose-dependent manner. IC50 was calculated using the sigmoidal dose–response function of GraphPad Prism. (C) Kaplan–Meier curves of overall survival of 30 glioblastoma patients, stratified by LINC00174 expression. The data are expressed as the mean ± SEM, **P < 0.01 (JPEG 744 kb)

13577_2019_281_MOESM2_ESM.jpg

Figure S2 The relative miR-1910-3p levels in glioma tissues (tumor, n = 40) and control tissues (normal, n = 40), as determined using qRT-PCR. The data are expressed as the mean ± SEM, **P < 0.01 (JPEG 462 kb)

Supplementary material 3 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhao, H., Song, J. et al. LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis. Human Cell 33, 159–174 (2020). https://doi.org/10.1007/s13577-019-00281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00281-1

Keywords

Navigation