Skip to main content
Log in

Age-dependent decline in neurogenesis of the hippocampus and extracellular nucleotides

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

New neurons are continuously generated in the adult brain. This generation primarily occurs in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. In the SGZ, neural stem cells (NSCs) give rise to glutamatergic granule cells that integrate into the hippocampal circuitry. Reduction of neurogenesis in the hippocampus impairs learning and memory, which suggests that this process is important for adult hippocampal function. Indeed, the neurogenesis is reduced in the progression of aging, which is thought to contribute to age-related cognitive impairment. Although the mechanism of age-dependent decline in neurogenesis remains largely obscure, astrocytes are thought to play a vital role in regulating NSC proliferation and differentiation. Both astrocytes and NSCs secrete nucleotides to the extracellular space and extracellular nucleotides bind to their receptors on the surface of target cells. In this review, the recent knowledge on adult neurogenesis in the hippocampus is summarized briefly, and possible role of extracellular nucleotides in the age-dependent changes of the adult neurogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suh H, Consiglio A, Ray J, et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2 + neural stem cells in the adult hippocampus. Cell Stem Cell. 2007;1(5):515–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ehninger D, Kempermann G. Neurogenesis in the adult hippocampus. Cell Tissue Res. 2008;331(1):243–50.

    Article  PubMed  Google Scholar 

  3. Lugert S, Basak O, Knuckles P, et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell. 2010;6(5):445–56.

    Article  CAS  PubMed  Google Scholar 

  4. Kempermann G, Jessberger S, Steiner B, et al. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52.

    Article  CAS  PubMed  Google Scholar 

  5. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA. 2006;103(21):8233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toda T, Gage FH. Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018;373(3):693–709.

    Article  PubMed  Google Scholar 

  7. Baptista P, Andrade JP. Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Front Neuroanat. 2018;12:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  9. Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roy NS, Wang S, Jiang L, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000;6(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  11. Dennis CV, Suh LS, Rodriguez ML, et al. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galán L, Gómez-Pinedo U, Guerrero A, et al. Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches. BMC Neurol. 2017;17(1):173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Knoth R, Singec I, Ditter M, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One. 2010;5(1):e8809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu YW, Curtis MA, Gibbons HM, et al. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci. 2008;28(11):2254–65.

    Article  CAS  PubMed  Google Scholar 

  15. Mathews KJ, Allen KM, Boerrigter D, et al. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell. 2017;16(5):1195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging cell stem. Cell. 2018;22(4):589–99.e5.

    CAS  Google Scholar 

  17. Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gould E, Reeves AJ, Fallah M, et al. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA. 1999;96(9):5263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leuner B, Kozorovitskiy Y, Gross CG, et al. Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA. 2007;104(43):17169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varela-Nallar L, Aranguiz FC, Abbott AC, et al. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Birth Defects Res C Embryo Today. 2010;90(4):284–96.

    Article  CAS  PubMed  Google Scholar 

  22. Kuhn HG, Toda T, Gage FH. Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci. 2018;38(49):10401–10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jin K, Sun Y, Xie L, et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell. 2003;2(3):175–83.

    Article  CAS  PubMed  Google Scholar 

  24. Heine VM, Maslam S, Zareno J, et al. Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur J Neurosci. 2004;19(1):131–44.

    Article  PubMed  Google Scholar 

  25. Drapeau E, Mayo W, Aurousseau C, et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA. 2003;100(24):14385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Driscoll I, Howard SR, Stone JC, et al. The aging hippocampus: a multi-level analysis in the rat. Neuroscience. 2006;139(4):1173–85.

    Article  CAS  PubMed  Google Scholar 

  27. Bernal GM, Peterson DA. Neural stem cells as therapeutic agents for age-related brain repair. Aging Cell. 2004;3(6):345–51.

    Article  CAS  PubMed  Google Scholar 

  28. Bizon JL, Lee HJ, Gallagher M. Neurogenesis in a rat model of age-related cognitive decline. Aging Cell. 2004;3(4):227–34.

    Article  CAS  PubMed  Google Scholar 

  29. Dupret D, Revest JM, Koehl M, et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS One. 2008;3(4):e1959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Morgenstern NA, Lombardi G, Schinder AF. Newborn granule cells in the ageing dentate gyrus. J Physiol. 2008;586(16):3751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toni N, Laplagne DA, Zhao C, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci. 2008;11(8):901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443(7110):421–426.

  33. Molofsky AV, Slutsky SG, Joseph NM, et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 2006;443(7110):448–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishino J, Kim I, Chada K, et al. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 2008;135(2):227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179–93.

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41(5):683–6.

    Article  CAS  PubMed  Google Scholar 

  37. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002;417(6884):39–44.

    Article  CAS  PubMed  Google Scholar 

  38. Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5.

    Article  CAS  PubMed  Google Scholar 

  39. Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci. 2002;22(1):183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mothet JP, Rouaud E, Sinet PM, et al. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell. 2006;5(3):267–74.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Takano T, Nedergaard M. Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods Mol Biol. 2009;48993–109.

  42. Ortinski PI, Dong J, Mungenast A, et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci. 2010;13(5):584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodríguez JJ, Yeh CY, Terzieva S, et al. Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging. 2014;35(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  44. Shetty AK, Hattiangady B, Shetty GA. Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia. 2005;51(3):173–86.

    Article  PubMed  Google Scholar 

  45. Gampe K, Stefani J, Hammer K, et al. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells. 2015;33(1):253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao X, Li LP, Qin XH, et al. Astrocytic adenosine 5′-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells. 2013;31(8):1633–43.

    Article  CAS  PubMed  Google Scholar 

  47. Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte. Ca2 + Signal Sci. 2010;327(5970):1250–4.

    CAS  Google Scholar 

  48. Petravicz J, Fiacco TA, McCarthy KD. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci. 2008;28(19):4967–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lalo U, Palygin O, Rasooli-Nejad S, et al. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol. 2014;12(1):e1001747.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lalo U, Rasooli-Nejad S, Pankratov Y. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem Soc Trans. 2014;42(5):1275–81.

    Article  CAS  PubMed  Google Scholar 

  51. Lin JH, Takano T, Arcuino G, et al. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol. 2007;302(1):356–66.

    Article  CAS  PubMed  Google Scholar 

  52. Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8(3):437–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verkhratsky A, Verkhrasky A, Krishtal OA, et al. Purinoceptors on neuroglia. Mol Neurobiol. 2009;39(3):190–208.

    Article  CAS  PubMed  Google Scholar 

  54. Ciruela F, Albergaria C, Soriano A, et al. Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. Biochim Biophys Acta. 2010;1798(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  55. Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology. 1997;36(9):1127–39.

    Article  CAS  PubMed  Google Scholar 

  56. North RA. P2X receptors: a third major class of ligand-gated ion channels. Ciba Found Symp. 1996;198:91–105.

    CAS  PubMed  Google Scholar 

  57. Khakh BS, Burnstock G, Kennedy C, et al. International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev. 2001;53(1):107–18.

    CAS  PubMed  Google Scholar 

  58. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007;64(12):1471–83.

    Article  CAS  PubMed  Google Scholar 

  59. Glaser T, Cappellari AR, Pillat MM, et al. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal. 2012;8(3):523–37.

    Article  CAS  PubMed  Google Scholar 

  60. Oliveira Á, Illes P, Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology. 2016;104:272–81.

    Article  CAS  PubMed  Google Scholar 

  61. Dubyak GR, el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993;265(3 Pt 1):C577–606.

    Article  CAS  PubMed  Google Scholar 

  62. Abbracchio MP, Ceruti S. Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal. 2006;2(4):595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abbracchio MP, Burnstock G, Boeynaems JM, et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006;58(3):281–341.

    Article  CAS  PubMed  Google Scholar 

  64. Messemer N, Kunert C, Grohmann M, et al. P2 × 7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology. 2013;73:122–37.

    Article  CAS  PubMed  Google Scholar 

  65. Delarasse C, Gonnord P, Galante M, et al. Neural progenitor cell death is induced by extracellular ATP via ligation of P2 × 7 receptor. J Neurochem. 2009;109(3):846–57.

    Article  CAS  PubMed  Google Scholar 

  66. Uda Y, Xu S, Matsumura T, et al. P2Y4 nucleotide receptor in neuronal precursors induces glutamatergic subtype markers in their descendant neurons. Stem Cell Rep. 2016;6(4):474–82.

    Article  CAS  Google Scholar 

  67. Okamoto M, Inoue K, Iwamura H, et al. Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J. 2011;25(10):3570–82.

    Article  CAS  PubMed  Google Scholar 

  68. Gao Z, Ure K, Ables JL, et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci. 2009;12(9):1090–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seib DR, Corsini NS, Ellwanger K, et al. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013;12(2):204–14.

    Article  CAS  PubMed  Google Scholar 

  70. Lee SM, Tole S, Grove E, et al. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development. 2000;127(3):457–67.

    CAS  PubMed  Google Scholar 

  71. Galceran J, Miyashita-Lin EM, Devaney E, et al. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development. 2000;127(3):469–82.

    CAS  PubMed  Google Scholar 

  72. Tran MD, Neary JT. Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci USA. 2006;103(24):9321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tran MD, Furones-Alonso O, Sanchez-Molano J, et al. Trauma-induced expression of astrocytic thrombospondin-1 is regulated by P2 receptors coupled to protein kinase cascades. Neuroreport. 2012;23(12):721–6.

    Article  CAS  PubMed  Google Scholar 

  74. Rosethorne EM, Nahorski SR, Challiss RA. Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells. Biochem Pharmacol. 2008;75(4):942–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jagasia R, Steib K, Englberger E, et al. GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci. 2009;29(25):7966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lakhina V, Arey RN, Kaletsky R, et al. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron. 2015;85(2):330–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  78. van Praag H. Exercise and the brain: something to chew on. Trends Neurosci. 2009;32(5):283–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Katsimpardi L, Lledo PM. Regulation of neurogenesis in the adult and aging brain. Curr Opin Neurobiol. 2018;53:131–8.

    Article  CAS  PubMed  Google Scholar 

  80. Bouchard J, Villeda SA. Aging and brain rejuvenation as systemic events. J Neurochem. 2015;132(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  81. Apple DM, Solano-Fonseca R, Kokovay E. Neurogenesis in the aging brain. Biochem Pharmacol. 2017;141:77–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research (C) (JSPS KAKENHI number 23500392) and Grant-in-Aid for Exploratory Research (JSPS KAKENHI number 18K18454) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Takei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takei, Y. Age-dependent decline in neurogenesis of the hippocampus and extracellular nucleotides. Human Cell 32, 88–94 (2019). https://doi.org/10.1007/s13577-019-00241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00241-9

Keywords

Navigation