Skip to main content
Log in

In vitro production of insulin-responsive skeletal muscle tissue from mouse embryonic stem cells by spermine-induced differentiation method

  • Rapid Communication
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The treatment of an embryoid body with spermine for a short duration can trigger the generation of a 3-dimensional multilayer myotube sheet (MMTS) that shows pulsatile activity. MMTS was previously characterized as a model of skeletal muscle tissue. In the present work, the insulin responsiveness of MMTS was investigated because it is an essential function for a model of skeletal muscle. The glucose uptake activity of MMTS was analyzed by confocal microscopy using fluorescent glucose analogs, namely 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) and its l-glucose counterpart, 2-NBDLG. The specific uptake rate of glucose was estimated from the difference between the fluorescent signals of 2-NBDG and 2-NBDLG. It was enhanced by insulin stimulation to 3.6 times higher than the control without insulin, and this insulin responsiveness was maintained for 5 days. The advantages of the 3-dimensional structure of MMTS are discussed in the contexts of its potential in vivo and in vitro uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest. 2000;105:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. González-Rodríguez Á, Mas-Gutierrez JA, Sanz-González S, et al. Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes. 2010;59:588–99.

    Article  PubMed  Google Scholar 

  3. Sato H, Kubota N, Kubota T, et al. Anagliptin increases insulin-induced skeletal muscle glucose uptake via an NO-dependent mechanism in mice. Diabetologia. 2016;59:2426–34.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Bayati A, Lukka D, Brown AE, Walker M. Effects of thrombin on insulin signalling and glucose uptake in cultured human myotubes. J Diabetes Complicat. 2016;30:1209–16.

    Article  PubMed  Google Scholar 

  5. Bertuzzi A, Conte F, Mingrone G, Papa F, Salinari S, Sinisgalli C. Insulin signaling in insulin resistance states and cancer: a modeling analysis. PLoS One. 2016;11:e0154415.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Obanda DN, Ribnicky D, Yu Y, Stephens J, Cefalu WT. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A). Sci Rep. 2016;6:22222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sasaki T, Matsuoka H, Saito M. Generation of a multi-layer muscle fiber sheet from mouse ES cells by the spermine action at specific timing and concentration. Differentiation. 2008;76:1023–30.

    Article  CAS  PubMed  Google Scholar 

  8. Saito M, Abe N, Ishida A, Nakagawa S, Matsuoka H. Concentration dependent effects of spermine on apoptosis and consequent generation of multilayer myotube sheets from mouse embryoid bodies in vitro. In Vitro Dev Biol Anim. 2014;50:973–81.

    Article  CAS  Google Scholar 

  9. Yoshioka K, Takahashi H, Homma T, et al. A novel fluorescence derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta. 1996;1289:5–9.

    Article  PubMed  Google Scholar 

  10. Ball SW, Bailey JR, Stewart JM, Vogels CM, Westcott SA. A fluorescent compound for glucose uptake measurements in isolated rat cardiomyocytes. Can J Physiol Pharmacol. 2002;80:205–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci USA. 2004;101:14937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Neil RG, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol. 2005;7:388–92.

    Article  PubMed  Google Scholar 

  13. Yamada Y, Saito M, Matsuoka H, Inagaki N. A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Prot. 2007;2:753–62.

    Article  CAS  Google Scholar 

  14. Yamamoto T, Nishiuchi Y, Teshima T, Matsuoka H, Yamada K. Synthesis of 2-NBDLG, a fluorescent derivative of l-glucosamine; the antipode of d-glucose tracer 2-NBDG. Tetrahedron Lett. 2008;49:6867–78.

    Google Scholar 

  15. Funabashi H, Ogino S, Saito M, Matsuoka H. Utilization of fluorescent glucose analog as a metabolic indicator during differentiation. Electrochemistry. 2012;80:299–301.

    Article  CAS  Google Scholar 

  16. Hashimoto H, Tamaki T, Hirata M, Uchiyama Y, Sato M, Mochida J. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a “bio-bond”. Peer J. 2016;4:e2231.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Culberson JW. Clinical aspects of glucose metabolism and chronic disease. Prog Mol Biol Transl Sci. 2017;146:1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Assi R, Foster TR, He H, et al. Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers. Regen Med. 2016;11:245–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall MN, Hall JK, Cadwallader AB, et al. Transplantation of skeletal muscle stem cells. Methods Mol Biol. 2017;1556:237–44.

    Article  PubMed  Google Scholar 

  20. Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, Perlingeiro RCR. Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev Rep. 2011;7:948–57.

    Article  Google Scholar 

  21. Mizuno Y, Chang H, Umeda K, et al. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J. 2010;24:2245–53.

    Article  CAS  PubMed  Google Scholar 

  22. Tierney M, Sacco A. Engraftment of FACS isolated muscle stem cells into injured skeletal muscle. Methods Mol Biol. 2017;1556:223–36.

    Article  PubMed  Google Scholar 

  23. Witt R, Weigand A, Boos AM, et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017;18:15(1–16).

  24. Haywood NJ, Cordell PA, Tang KY, et al. Insulin-like growth factor binding protein 1 could improve glucose regulation and insulin sensitivity through its RGD domain. Diabetes. 2017;66:287–99.

    Article  CAS  PubMed  Google Scholar 

  25. Hernández-Mijares A, Bañuls C, Peris JE, et al. A single acute dose of pinitol from a naturally occurring food ingredient decreases hyperglycemia and circulating insulin levels in healthy subjects. Food Chem. 2013;141:1267–72.

    Article  PubMed  Google Scholar 

  26. Bañuls C, Rovira-Llopis S, Falcón R, et al. Chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: a randomized controlled trial. Clin Nutr. 2016;35:600–7.

    Article  PubMed  Google Scholar 

  27. Santos JM, Benite-Ribeiro SA, Queiroz G, Duarte JA. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation. Cell Biochem Funct. 2014;32:621–4.

    Article  CAS  PubMed  Google Scholar 

  28. Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci. 2014;15:18677–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Emer. Hideaki Matsuoka of Tokyo University of Agriculture and Technology for his valuable advice in bioimaging. The work was supported in part by the Strategic Research Promotion Program, the Ministry of Education, Culture, Sports, Science, and Technology, on the research subject “Development of Next Generation Bioresources”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikako Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, M., Ishida, A. & Nakagawa, S. In vitro production of insulin-responsive skeletal muscle tissue from mouse embryonic stem cells by spermine-induced differentiation method. Human Cell 30, 162–168 (2017). https://doi.org/10.1007/s13577-017-0176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0176-8

Keywords

Navigation