Skip to main content

Advertisement

Log in

Gene expression as a biomarker for human radiation exposure

  • Rapid Communication
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Goffman T. Lack of strategic insight: the “dirty bomb” effort. Am J Disaster Med. 2009;4(3):181–3.

    PubMed  Google Scholar 

  2. Wolbarst AB, Wiley AL Jr, Nemhauser JB, Christensen DM, Hendee WR. Medical response to a major radiologic emergency: a primer for medical and public health practitioners. Radiology. 2010;254(3):660–77. doi:10.1148/radiol.09090330.

    Article  PubMed  Google Scholar 

  3. Chaudhry MA. Biomarkers for human radiation exposure. J Biomed Sci. 2008;15(5):557–63. doi:10.1007/s11373-008-9253-z.

    Article  PubMed  CAS  Google Scholar 

  4. Chaudhry MA. Bystander effect: biological endpoints and microarray analysis. Mutat Res. 2006;597(1–2):98–112. doi:10.1016/j.mrfmmm.2005.04.023.

    PubMed  CAS  Google Scholar 

  5. Rodrigues AS, Oliveira NG, Gil OM, Leonard A, Rueff J. Use of cytogenetic indicators in radiobiology. Radiat Prot Dosim. 2005;115(1–4):455–60.

    Article  CAS  Google Scholar 

  6. Leonard A, Rueff J, Gerber GB, Leonard ED. Usefulness and limits of biological dosimetry based on cytogenetic methods. Radiat Prot Dosim. 2005;115(1–4):448–54.

    Article  CAS  Google Scholar 

  7. Pinto MM, Santos NF, Amaral A. Current status of biodosimetry based on standard cytogenetic methods. Radiat Environ Biophys. 2010;49(4):567–81. doi:10.1007/s00411-010-0311-3.

    Article  PubMed  Google Scholar 

  8. Chaudhry MA. Radiation-induced gene expression profile of human cells deficient in 8-hydroxy-2′-deoxyguanine glycosylase. Int J Cancer. 2006;118(3):633–42. doi:10.1002/ijc.21392.

    Article  PubMed  CAS  Google Scholar 

  9. Chaudhry MA. Analysis of gene expression in normal and cancer cells exposed to gamma-radiation. J Biomed Biotechnol. 2008;2008:541678. doi:10.1155/2008/541678.

    Article  PubMed  Google Scholar 

  10. Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, Trent J, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res. 2000;154(3):342–6.

    Article  PubMed  CAS  Google Scholar 

  11. Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, et al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys. 2011;80(2):549–57. doi:10.1016/j.ijrobp.2010.12.061.

    Article  PubMed  CAS  Google Scholar 

  12. Chaudhry MA. Radiation-induced gene expression profile of human cells deficient in 8-hydroxy-2′-deoxyguanine glycosylase. Int J Cancer. 2006;118(3):633–42.

    Article  PubMed  CAS  Google Scholar 

  13. Williams BB, Dong R, Nicolalde RJ, Matthews TP, Gladstone DJ, Demidenko E, et al. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation. Int J Radiat Biol. 2011;87(8):766–75. doi:10.3109/09553002.2011.583316.

    Article  PubMed  CAS  Google Scholar 

  14. Wood T, Lewis BJ, McDermott K, Bennett LG, Avarmaa K, Corcoran EC, et al. Use of a dual-labelled oligonucleotide as a DNA dosemeter for radiological exposure detection. Radiat Prot Dosim. 2012;148(1):20–33. doi:10.1093/rpd/ncq599.

    Article  CAS  Google Scholar 

  15. Kaspler P, Chen R, Hyrien O, Jelveh S, Bristow RG, Hill RP. Biodosimetry using radiation-induced micronuclei in skin fibroblasts. Int J Radiat Biol. 2011;87(8):824–38. doi:10.3109/09553002.2011.582927.

    Article  PubMed  CAS  Google Scholar 

  16. Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace A Jr. Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol. 2011;87(8):802–23. doi:10.3109/09553002.2011.556177.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma M, Halligan BD, Wakim BT, Savin VJ, Cohen EP, Moulder JE. The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation. Health Phys. 2010;98(2):186–95. doi:10.1097/HP.0b013e3181b17cbd.

  18. Paul S, Barker CA, Turner HC, McLane A, Wolden SL, Amundson SA. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiat Res. 2011;175(3):257–65.

    Google Scholar 

  19. Paul S, Amundson SA. Gene expression signatures of radiation exposure in peripheral white blood cells of smokers and non-smokers. Int J Radiat Biol. 2011;87(8):791–801.

    Article  PubMed  CAS  Google Scholar 

  20. Filiano AN, Fathallah-Shaykh HM, Fiveash J, Gage J, Cantor A, Kharbanda S, et al. Gene expression analysis in radiotherapy patients and C57BL/6 mice as a measure of exposure to ionizing radiation. Radiat Res. 2011;176(1):49–61.

    Article  PubMed  CAS  Google Scholar 

  21. Pogosova-Agadjanyan EL, Fan W, Georges GE, Schwartz JL, Kepler CM, Lee H, et al. Identification of radiation-induced expression changes in nonimmortalized human T cells. Radiat Res. 2011;175(2):172–84.

    Article  PubMed  CAS  Google Scholar 

  22. Turtoi A, Brown I, Schlager M, Schneeweiss FH. Gene expression profile of human lymphocytes exposed to (211)At alpha particles. Radiat Res. 2010;174(2):125–36. doi:10.1667/RR1659.1.

    Article  PubMed  CAS  Google Scholar 

  23. Brengues M, Paap B, Bittner M, Amundson S, Seligmann B, Korn R, et al. Biodosimetry on small blood volume using gene expression assay. Health Phys. 2010;98(2):179–85. doi:10.1097/01.HP.0000346706.44253.5c.

    Article  PubMed  CAS  Google Scholar 

  24. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004;29(5):265–73.

    Article  PubMed  Google Scholar 

  25. Barcellos-Hoff MH. Integrative radiation carcinogenesis: interactions between cell and tissue responses to DNA damage. Semin Cancer Biol. 2005;15(2):138–48.

    Article  PubMed  CAS  Google Scholar 

  26. Nonaka M, Yoshizaki F. Evolution of the complement system. Mol Immunol. 2004;40(12):897–902.

    Article  PubMed  CAS  Google Scholar 

  27. Godekmerdan A, Ozden M, Ayar A, Gursu MF, Ozan AT, Serhatlioglu S. Diminished cellular and humoral immunity in workers occupationally exposed to low levels of ionizing radiation. Arch Med Res. 2004;35(4):324–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmad Chaudhry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omaruddin, R.A., Roland, T.A., James Wallace III, H. et al. Gene expression as a biomarker for human radiation exposure. Human Cell 26, 2–7 (2013). https://doi.org/10.1007/s13577-013-0059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-013-0059-6

Keywords

Navigation