Skip to main content
Log in

Generalized Modified Inverse Weibull Distribution: Its Properties and Applications

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new useful continuous distribution called generalized modified inverse Weibull distribution. This distribution is a four-parameter extension of the modified inverse Weibull which generalizes some well-known distributions. Various statistical and probabilistic properties are derived such as rth moment, moment generating function, Renyi and Shannon entropies and hazard rate function. We also discuss estimation of the parameters by maximum likelihood and provide the information matrix. The likelihood ratio order (which implies the hazard rate and usual stochastic orders) between smallest order statistics from two independent heterogeneous samples of this new family are discussed. Finally, a real numerical example is also considered for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarset, M. (1987). How to identify bathtub hazard rate. IEEE Trans. Reliab. 36, 106–108.

    MATH  Google Scholar 

  • Aho, K., Derryberry, D. and Peterson, T. (2014). Model selection for ecologists: the world views of AIC and BIC. Ecology 95, 631–636.

    Google Scholar 

  • Ang, A.H.S. and Tang, W.H. (1984). Probability Concepts in Engineering Planning and Design, vol. 2: Decision, Risk, and Reliability, 1st edn., Wiley, Language: English, ISBN-10: 0471032018, ISBN-13: 978-0471032014.

  • Aryal, G.R. and Tsokos, C.P. (2011). Transmuted weibull distribution: a generalization of the weibull probability distribution. Eur. J. Pure Appl. Math. 4, 2, 89–102.

    MathSciNet  MATH  Google Scholar 

  • Bebbington, M., Lai, C.D. and Zitikis, R. (2007). A flexible Weibull extension. Reliab. Eng. Syst. Saf. 92, 719–726.

    Google Scholar 

  • Carrasco, J.M.F. and Ortega, M.M.E. (2008). A generalized modified Weibull distribution for lifetime modeling. Comput. Stat. Data Anal. 53, 450–462.

    MathSciNet  MATH  Google Scholar 

  • Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. J. Qual. Technol. 27, 154–161.

    Google Scholar 

  • Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E. (1996). On the lambert w function. Adv. Comput. Math. 5, 329–359.

    MathSciNet  MATH  Google Scholar 

  • Crooks, G.E. (2010). The Amoroso Distribution. arXiv:1005.3274 [math.ST].

  • Elbatal, I. and Muhammed, H.Z. (2014). Exponentiated generalized inverse Weibull distribution. Appl. Math. Sci. 8, 3997–4012.

    Google Scholar 

  • Folks, J.L. and Chhikara, R. (1978). The inverse gaussian distribution and its statistical application-a review. Journal of the Royal Statistical Society B 40, 263–289.

    MathSciNet  MATH  Google Scholar 

  • James, V.D., James, R. and Holli, A. (2011). Fundamentals of mathematics. Brooks cole, language: english, ISBN-10: 0538497971, ISBN-13: 978-0538497978.

  • Johnson, N.L., Kotz, S. and Balakrishan, N. (1995). Continuous Univariate Distributions, 1, 2nd edn. Wiley, New York.

    Google Scholar 

  • Khan, M.S. and Robert, K. (2012). Modified inverse weibull distribution. Journal of Statistics Applications and Probability 2, 115–132.

    Google Scholar 

  • Khan, M.S., Pasha, G.R. and Pasha, A.H. (2008). Theoretical analysis of inverse Weibull distribution. Wseas Transactions on Mathematics 7, 1109–2769.

    MATH  Google Scholar 

  • Khan, M.S., Robert, K. and Irene, L.H. (2014). Characterisations of the transmuted inverse Weibull distribution. Journal of the Australian Mathematical Society. Series B. Applied Mathematics 55, 197–217.

    MathSciNet  Google Scholar 

  • Keller, A.Z. and Kamath, A.R.R. (1982). Alternative reliability models for mechanical systems. In: Proceeding of the 3rd International Conference on Reliability and Maintainability, pp. 411–415.

  • Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley, New York.

    MATH  Google Scholar 

  • Renyi, A. (1961). On measures of information and entropy. In: Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561.

  • Shaked, M. and Shanthikumar, J.G. (2007). Stochastic Orders. Springer, New York.

    MATH  Google Scholar 

  • Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.

    MathSciNet  MATH  Google Scholar 

  • Soliman, A., Amin, E.A. and Abd-El Aziz, A.A. (2010). Estimation and prediction from inverse Rayleigh distribution based on lower record values. Appl. Math. Sci. 4, 3057–4066.

    MathSciNet  MATH  Google Scholar 

  • Stanley, R.P. (2011). Enumerative Combinatorics, 1, 1st edn. Cambridge University Press, Cambridge. Language: English, ISBN-10: 1107602629, ISBN-13: 978-1107602625.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Saboori.

Appendices

Appendix A: BesselK Function

$$\begin{array}{@{}rcl@{}} M_{T}(z)=E(e^{zT})={\int}_{0}^{\infty}\alpha \beta \left( \frac{1}{t}\right) (1-\exp(-\alpha/t))^{\beta-1}exp\{-\alpha/t) exp(zt) \} dt , \end{array} $$

by changing variable \((1-\exp (-\alpha /t))=x\), we have

$$\begin{array}{@{}rcl@{}} E(e^{zT})={{\int}_{0}^{1}}\beta x^{\beta -1} \exp\left\{ \frac{-z\alpha}{log(1-x)} \right\} dx , \end{array} $$

by changing variable 1 − x = y, we have

$$\begin{array}{@{}rcl@{}} E(e^{zT})&=&-{{\int}_{0}^{1}}\beta (1-y)^{\beta -1} \exp\left\{ \frac{-z\alpha}{log(y)} \right\} ,\\ &=& -\beta \sum\limits_{k = 0}^{\infty}\frac{{\Gamma}(\beta)}{{\Gamma}(\beta -k)}(-1)^{k}{{\int}_{0}^{1}}y^{k} \exp\left\{ \frac{-z\alpha}{log(y)} \right\}dy, \end{array} $$

where

$$\begin{array}{@{}rcl@{}} {{\int}_{0}^{1}}y^{k} \exp\left\{ \frac{-z\alpha}{log(y)} \right\}dy=\frac{2\sqrt{-\alpha z} BesselK(1,2\sqrt{(-\alpha z)(k + 1)})}{\sqrt{k + 1}}. \end{array} $$

Appendix B: Lagrange Inversion Formula

If F(x) is a series in x that satisfies the functional equation

Inverse of lagrange theorem (Stanley, 2011): If w is a power series with respect to x such that it is satisfies the following functional equation:

$$ F(x)=x \phi (F(x)). $$

Then g(F(x)) has laurent series with the following coefficient:

$$ [x^{n}]goF(x)=\frac{1}{n}[y^{n-1}] \left( g^{\prime}(y).\phi^{n}(y) \right). $$

Thus, we want to compute \(\frac {1}{F(x)}\), i.e., \(g(x)=\frac {1}{x}\) and F(x) = xexp(−F(x)). Therfore ϕ(x) = ex. Then \([x^{n}] \frac {1}{F(x)}=\frac {1}{n}[y^{n-1}][\frac {-1}{y^{2}}e^{-ny}]\). But

$$ \frac{-1}{y^{2}}e^{-ny}=\frac{-1}{y^{2}} \sum\limits_{i = 0}^{\infty}\frac{(-ny)^{i}}{i!}=\sum\limits_{i = 0}^{\infty}\frac{(-1)^{i + 1} n^{i} y^{i-2}}{i!}. $$
(10.1)

The coefficient of yn− 1 in (10.1) is i − 2 = n − 1, i.e., i = n + 1 and finally

$$ [x^{n}]\frac{1}{F(x)}=\frac{1}{n}\frac{(-1)^{n + 2}n^{n + 1}}{(n + 1)!}=\frac{(-1)^{n} n^{n}}{(n + 1)!}. $$

Appendix C: Differential

$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \alpha^{2}}&=&-\frac{n-m}{\alpha^{2}} +\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\alpha\alpha}\nu_{i}-\{(\dot{\nu}_{i})_{\alpha}\}^{2}}{{\nu_{i}^{2}}}\\&&-(\beta -1)\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\alpha\alpha}(1-\nu_{i})-\{(\dot{\nu}_{i})_{\alpha}\}^{2}}{(1-\nu_{i})^{2}} \\ &&-\beta\sum\limits_{i=n-m}^{n}\frac{(\ddot{\nu}_{i})_{\alpha\alpha}(1-\nu_{i})-\{(\dot{\nu}_{i})_{\alpha}\}^{2}}{(1-\nu_{i})^{2}}, \\ \frac{\partial^{2}\ell}{\partial \alpha \partial \beta}&=&-\left( \sum\limits_{i = 1}^{n-m}\frac{(\dot{\nu_{i}})_{\alpha}}{1-\nu_{i}}+ \sum\limits_{i=n-m + 1}^{n}\frac{(\dot{\nu_{i}})_{\alpha}}{1-\nu_{i}} \right), \end{array} $$
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \alpha \partial \gamma}&=& \sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\alpha\gamma}\nu_{i} - (\dot{\nu_{i}})_{\alpha}(\dot{\nu_{i}})_{\gamma}}{{\nu_{i}^{2}}}-(\beta -1)\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\alpha\gamma}(1-\nu_{i}) +(\dot{\nu_{i}})_{\alpha}(\dot{\nu_{i}})_{\gamma}}{(1-\nu_{i})^{2}} \\ &&-\beta \sum\limits_{i=n-m + 1}^{n}\frac{(\ddot{\nu}_{i})_{\alpha\gamma}(1-\nu_{i}) +(\dot{\nu_{i}})_{\alpha}(\dot{\nu_{i}})_{\gamma}}{(1-\nu_{i})^{2}}, \\ \frac{\partial^{2}\ell}{\partial \alpha \partial \lambda}\!&=&\!\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\alpha \lambda}\nu_{i} - (\dot{\nu_{i}})_{\alpha}(\dot{\nu_{i}})_{\lambda}}{\nu_{i}^{2}}-(\beta -1)\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\alpha \lambda}(1-\nu_{i}) +(\dot{\nu_{i}})_{\alpha}(\dot{\nu_{i}})_{\lambda}}{(1-\nu_{i})^{2}} \\ &&-\beta \sum\limits_{i=n-m + 1}^{n}\frac{(\ddot{\nu}_{i})_{\alpha\lambda}(1-\nu_{i}) +(\dot{\nu_{i}})_{\alpha}(\dot{\nu_{i}})_{\lambda}}{(1-\nu_{i})^{2}}, \end{array} $$
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \beta^{2}}&=&-\frac{n-m}{\beta^{2}} \end{array} $$
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \beta \partial \gamma}&=& \sum\limits_{i = 1}^{n}\frac{(\dot{\nu_{i}})_{\gamma}}{1-\nu_{i}} \end{array} $$
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \beta \partial \lambda}&=& \sum\limits_{i = 1}^{n}\frac{(\dot{\nu_{i}})_{\lambda}}{1-\nu_{i}} \end{array} $$
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \gamma^{2}}&=&-\sum\limits_{i = 1}^{n-m}(\gamma +\lambda /t_{i} )^{-2}+ \sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\gamma \gamma}\nu_{i}+ \{(\dot{\nu_{i}})_{\gamma}\}^{2} }{{\nu_{i}^{2}}} \\ &&-(\beta-1)\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\gamma\gamma}(1-\nu_{i}) + \{(\dot{\nu_{i}})_{\gamma}\}^{2}}{(1-\nu_{i})^{2}} \\ &&-\beta\sum\limits_{i=n-m + 1}^{n}\frac{(\ddot{\nu}_{i})_{\gamma\gamma}(1-\nu_{i}) + \{(\dot{\nu_{i}})_{\gamma}\}^{2}}{(1-\nu_{i})^{2}}, \end{array} $$
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell}{\partial \gamma \partial \lambda}&=&-\sum\limits_{i = 1}^{n-m}t_{i}^{-1}(\gamma +\lambda /t_{i})^{-2}+ \sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\lambda \gamma}\nu_{i}+ (\dot{\nu_{i}})_{\lambda}(\dot{\nu_{i}})_{\gamma}}{{\nu_{i}^{2}}} \\ &&-(\beta-1)\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\lambda\gamma}(1-\nu_{i}) +(\dot{\nu_{i}})_{\gamma} (\dot{\nu_{i}})_{\lambda}}{(1-\nu_{i})^{2}} \\ &&-\beta\sum\limits_{i=n-m + 1}^{n}\frac{(\ddot{\nu}_{i})_{\lambda\gamma}(1-\nu_{i}) +(\dot{\nu_{i}})_{\gamma} (\dot{\nu_{i}})_{\lambda}}{(1-\nu_{i})^{2}}, \\ \frac{\partial^{2}\ell}{\partial \lambda^{2}}&=&-\sum\limits_{i = 1}^{n-m}(\gamma t_{i} +\lambda )^{-2}+ \sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\lambda \lambda}\nu_{i}+ \{(\dot{\nu_{i}})_{\lambda}\}^{2} }{{\nu_{i}^{2}}} \\ &&-(\beta-1)\sum\limits_{i = 1}^{n-m}\frac{(\ddot{\nu}_{i})_{\lambda\lambda}(1-\nu_{i}) + \{(\dot{\nu_{i}})_{\lambda}\}^{2}}{(1-\nu_{i})^{2}} \\ &&-\beta\sum\limits_{i=n-m + 1}^{n}\frac{(\ddot{\nu}_{i})_{\lambda\lambda}(1-\nu_{i}) + \{(\dot{\nu_{i}})_{\lambda}\}^{2}}{(1-\nu_{i})^{2}}, \end{array} $$

where

$$\begin{array}{@{}rcl@{}} &&(\ddot{\nu}_{i})_{\alpha \alpha}=-(\dot{\nu_{i}})_{\alpha}t_{i}^{-\gamma}exp(\lambda/t_{i}),~(\ddot{\nu}_{i})_{\gamma \gamma}=-(\dot{\nu_{i}})_{\gamma}log(t_{i})(1+log(\nu_{i}),\\ &&(\ddot{\nu}_{i})_{\lambda\lambda}=(\dot{\nu_{i}})_{\lambda}\left( 1/t_{i}+(\dot{\nu_{i}})_{\lambda}/\nu_{i} \right),~(\ddot{\nu}_{i})_{\alpha\gamma}=-(\dot{\nu_{i}})_{\alpha}log(t_{i})(1+\alpha (\dot{\nu_{i}})_{\alpha} / \nu_{i}), \\ &&(\ddot{\nu}_{i})_{\alpha\lambda}=(\dot{\nu_{i}})_{\alpha}(1+\alpha (\dot{\nu_{i}})_{\alpha} / \nu_{i}) /t_{i},~ (\ddot{\nu}_{i})_{\gamma\lambda}=(\dot{\nu_{i}})_{\gamma}(1+log(\nu_{i})) /t_{i}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboori, H., Barmalzan, G. & Ayat, S.M. Generalized Modified Inverse Weibull Distribution: Its Properties and Applications. Sankhya B 82, 247–269 (2020). https://doi.org/10.1007/s13571-018-0182-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-018-0182-1

Keywords

AMS (2000) subject classification

Navigation