Skip to main content
Log in

Objective Bayesian analysis for exponential power regression models

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

We develop objective Bayesian analysis for the linear regression model with random errors distributed according to the exponential power distribution. More specifically, we derive explicit expressions for three different Jeffreys priors for the model parameters. We show that only one of these Jeffreys priors leads to a proper posterior distribution. In addition, we develop fast posterior analysis based on Laplace approximations. Moreover, we show that our proposed Bayesian analysis compares favorably to a posterior analysis based on a competing noninformative prior. Finally, we illustrate our methodology with applications of the exponential power regression model to two different datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions. Dover, New York.

    MATH  Google Scholar 

  • Achcar, J.A. and Pereira, G.A. (1999). Use of exponential power distributions for mixture models in the presence of covariates. J. Appl. Stat., 26, 669–679.

    Article  MATH  Google Scholar 

  • Berger, J.O., De Oliveira, V. and Sansó, B. (2001). Objective Bayesian analysis of spatially correlated data. J. Amer. Statist. Assoc., 96, 1361–1374.

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P. and Tiao, G.C. (1962). A further look at robustness via Bayes’s theorem. Biometrika, 49, 419–432.

    MathSciNet  MATH  Google Scholar 

  • Box, G.E.P. and Tiao, G.C. (1992). Bayesian inference in statistical analysis. Wiley-Interscience.

  • Butler, R.J., Mcdonald, J.B., Nelson, R.D. and White, S.B. (1990). Robust and partially adaptive estimation of regression models. Rev. Econom. Statist., 72, 321–327.

    Article  Google Scholar 

  • Choy, S.T.B. and Smith, A.F.M. (1997). On robust analysis of a normal location parameter. J. R. Stat. Soc. Ser. B, 59, 463–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Datta, G.S., Ghosh, M. and Mukerjee, R. (2000a). Some new results on probability matching priors. Calcutta Statist. Assoc. Bull., 50, 179–192.

    MathSciNet  MATH  Google Scholar 

  • Datta, G.S., Mukerjee, R., Ghosh, M. and Sweeting, T.J. (2000b). Bayesian prediction with approximate frequentist validity. Ann. Statist., 28, 1414–1426.

    Article  MathSciNet  MATH  Google Scholar 

  • DiCiccio, T.J. and Monti, A.C. (2004). Inferential aspects of the skew exponential power distribution. J. Amer. Statist. Assoc., 99, 439–450.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira, M.A.R. and De Oliveira, V. (2007). Bayesian reference analysis for Gaussian Markov random rields. J. Multivariate Anal., 98, 789–812.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira, M.A.R. and Suchard, M.A. (2008). Bayesian analysis of elapsed times in continuous-time Markov chains. Canad. J. Statist., 36, 355–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, M. (2011). Objective priors: an introduction for frequentists. Statist. Sci., 26, 187–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Jeffreys, H. (1961). Theory of Probability. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Kass, R.E. and Raftery, A.E. (1995). Bayes factor. J. Amer. Statist. Assoc., 90, 773–795.

    Article  MATH  Google Scholar 

  • Levine, D.M., Krehbiel, T.C. and Berenson, M.L. (2006). Business Statistics: A First Course. Pearson Prentice Hall.

  • Liang, F., Liu, C. and Wang, N. (2007). A robust sequential Bayesian method for identification of differentially expressed genes. Statist. Sinica, 17, 571–597.

    MathSciNet  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (2007). Numerical Recipes in C: The Art of Scientific Computing, 3rd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Severini, T.A., Mukerjee, R. and Ghosh, M. (2002). On an exact probability matching property of right-invariant priors. Biometrika, 89, 952–957.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc., 81, 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Vianelli, S. (1963). La misura della variabilità condizionata in uno schema generale delle curve normali di frequenza. Statistica, 23, 447–474.

    Google Scholar 

  • Walker, S.G. and Gutiérrez-Peña, E. (1999). Robustifying Bayesian Procedures. In Bayesian Statistics 6. Oxford University Press, New York.

    Google Scholar 

  • Wasserman, L. (2000). Asymptotic inference for mixture models using data-dependent priors. J. R. Stat. Soc. Ser. B, 62, 159–180.

    Article  MathSciNet  MATH  Google Scholar 

  • West, M. (1984). Outlier models and prior distributions in Bayesian linear regression. J. R. Stat. Soc. Ser. B, 46, 431–439.

    MATH  Google Scholar 

  • West, M. (1987). On scale mixtures of normal distributions. Biometrika, 79, 646–648.

    Article  Google Scholar 

  • Zhu, D. and Zinde-Walsh, V. (2009). Properties and estimation of asymmetric exponential power distribution. J. Econometrics, 148, 86–99.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work of Salazar was supported in part by a FAPERJ grant. The work of Ferreira was supported in part by National Science Foundation Grant DMS-0907064. The work of Migon was supported in part by CNPq and CAPES Grants. Part of this research was done while Salazar was a postdoctoral fellow at the Federal University of Rio de Janeiro. Part of this research was done while Ferreira was a visiting fellow at the Statistical and Applied Mathematical Sciences Institute (SAMSI). SAMSI is supported by National Science Foundation Grant DMS-0635449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Salazar.

A Appendix

A Appendix

Proof of Theorem 3.1

Using the results of Proposition 3.1 we have that

–:

For independence Jeffreys prior \(\pi^{I_1}(\theta)\): marginal priors for β and (σ,p) are independent a priori such that \(\pi^{I_1}(\beta,\sigma,p) = \pi^{I_1}(\beta) \pi^{I_1}(\sigma,p)\) and

$$ \begin{array}{rll} \pi^{I_1}(\sigma,p)&& \propto \sqrt{I_{\sigma \sigma}I_{pp}-I_{\sigma p}^2} \propto \frac{1}{\sigma p}\left\{ \left(1 + \frac{1}{p}\right)\Psi'\left(1 + 1/p\right) - 1 \right\}^{1/2}, \\ \pi^{I_1}(\beta) && \propto \sqrt{\det(I_{\beta \beta})} \propto 1. \end{array} $$
–:

For independence Jeffreys prior \(\pi^{I_2}(\theta)\): let us consider independence Jeffreys prior such that \(\pi^{I_2}(\theta) \propto \pi^{I_2}(\beta)\pi^{I_2}(\sigma)\pi^{I_2}(p)\), that is, taking each of these parameters as independent. Then, from the Fisher information matrix, \(\pi^{I_2}(\beta) \propto 1\), \(\pi^{I_2}(\sigma) \propto \sigma^{-1}\) and \(\pi^{I_2}(p) \propto p^{-3/2}(1+p^{-1})^{1/2}\{\Psi'(1+p^{-1})\}^{1/2}\). Thus,

$$ \pi^{I_2}(\beta,\sigma,p) \propto \frac{1}{\sigma p^{3/2}}\left\{ \left(1 + \frac{1}{p}\right)\Psi'\left(1 + \frac{1}{p}\right)\right\}^{1/2}. $$
–:

For Jeffreys-rule prior: \(\pi^J(\beta,\sigma,p) \propto \sqrt{\det(I(\theta))} = \sqrt{I_{\sigma \sigma}I_{pp}-I_{\sigma p}^2}\sqrt{\det(I_{\beta \beta})}\) where \(\det(I_{\beta \beta}) \propto \left\{ {1}/{\sigma^2}\Gamma\left(1/p\right) \Gamma\left(2-1/p\right) \right\}^{k}\). Therefore,

$$ \pi^J(\beta,\sigma,p) \propto \frac{1}{\sigma^k}\left\{\Gamma\left(\frac{1}{p}\right)\Gamma\left(2-\frac{1}{p}\right) \right\}^{k/2}\pi^{I_1}(\sigma,p). $$

Proof of Lemma 3.2

Considering the integrated likelihood in (4.1), the integrated likelihood for p is

$$ \begin{array}{rll} L^I(p;y) &=& \int_{\mathbb{R}^k}L^I(\beta,p;y)\pi(\beta)d\beta\\ &\propto &\, p^{-1}\Gamma\left(\frac{n+a-1}{p}\right)\left\{\Gamma\left(1+\frac{1}{p}\right) \right\}^{-(n+a-1)}\\ &&\times\int_{\mathbb{R}^k}\left\{\sum\limits_{i=1}^{n}|y_i-x_i'\beta|^p\right\}^{-\frac{n+a-1}{p}}d\beta. \end{array} $$

Let us define the following two functions:

$$ \begin{array}{rll} h(\beta,p) &=& n\left(\max|y_i|+\mathop\sum\limits_{l=1}^k|\tilde{x}_l| |\beta_l| \right)^p \\ g(\beta,p) &=& \left\{ \begin{array}{ll} n\left|\bar{y}-\bar{x}'\beta^* \right|^p, & \mbox{if} \; \beta \in C_1, \\ n\left|\bar{y}-\bar{x}'\beta \right|^p, & \mbox{if} \; \beta \in C_2, \\ \end{array}\right. \end{array} $$

where \(|\tilde{x}_l| = \max|x_{il}|\), C 1 = {β ∈ ℝ, C 2 = {β ∈ ℝand \(\beta^* = {\displaystyle\arg\min_{\beta}} \sum_{i=1}^{n}|y_i-x_i'\beta|^p\). Note that \(\sum_{i=1}^{n}|y_i-x_i'\beta^*|^p>0\) with probability 1 and, for example, if p = 2 then β * = (xx) − 1 xy.

Note the following:

  1. (i)
    $$ \begin{array}{rll} \sum\limits_{i=1}^{n}|y_i-x_i'\beta|^p &\leq& \sum\limits_{i=1}^{n}(|y_i|+|x_i'\beta|)^p \leq \sum\limits_{i=1}^{n}\left(\max|y_i|+\sum\limits_{l=1}^k|x_{il}|\, |\beta_l|\right)^p \\ &\leq& \sum\limits_{i=1}^{n}\left(\max|y_i|+\sum\limits_{l=1}^k|\tilde{x}_l|\, |\beta_l| \right)^p = h(\beta,p). \end{array} $$
  2. (ii)

    For p ≥ 1 the function |·|p is convex. Thus, by Jensen’s inequality

    $$ \sum\limits_{i=1}^n|y_i-x_i'\beta|^p \geq n\left|1/n\sum\limits_{i=1}^n (y_i- x_i'\beta)\right|^p = n|\bar{y}-\bar{x}'\beta|^p. $$
  3. (iii)

    Consider β ∈ C 1. Using the definition of β * and result (ii) we have

    $$ \sum_{i=1}^n|y_i - x_i'\beta|^p \geq \sum_{i=1}^n|y_i-x_i'\beta^*|^p \geq n|\bar{y}-\bar{x}'\beta^*|^p = g(\beta,p). $$
  4. (iv)

    Consider β ∈ C 2. Then by result (ii) we have

    $$ \sum_{i=1}^n|y_i - x_i'\beta|^p \geq n|\bar{y}-\bar{x}'\beta|^p = g(\mu,p). $$
  5. (v)

    Thus, by results (iii) and (iv),

    $$ \sum\limits_{i=^1}^n|y_i - x_i'\beta|^p \geq g(\beta,p). $$

Therefore, by results (i) and (v) above,

$$ \begin{array}{rll} \int_{\mathbb{R}^k}\{h(\beta,p)\}^{-\frac{n+a-1}{p}}d\beta &\leq& \int_{\mathbb{R}^k} \left\{\mathop\sum\limits_{i=1}^n|y_i-x_i'\beta|^p\right\}^{-\frac{n+a-1}{p}}d\beta\\ &\leq& \int_{\mathbb{R}^k}\{g(\beta,p)\}^{-\frac{n+a-1}{p}}d\beta. \end{array} $$

Let us now compute the left and right integral above. For the left integral and considering \(\beta_{(-j)} = (\beta_{j+1}, \ldots, \beta_k)' \in \mathbb{R}^{k-j}\) for j = 1, ..., k − 1 we have:

$$ \begin{array}{rll} &&{\kern-6pt} \int_{\mathbb{R}^k}\{h(\beta,p)\}^{-\frac{n+a-1}{p}}d\beta \\ &&=\, 2\int\int_0^{\infty}\left\{ n^{\frac{1}{p}}\left(\max|y_i| + \sum_{l=2}^k|\tilde{x}_l||\beta_l| + |\tilde{x}_1|\beta_1\right)\right\}^{-(n+a-1)}d\beta_1 d\beta_{(-1)} \\ &&= \left.2\int\frac{n^{-\frac{n+a-1}{p}}\{max|y_i|+\sum\limits_{l=2}^k|\tilde{x}_l||\beta_l| + |\tilde{x}_1|\beta_1\}^{-(n+a-2)}}{|\tilde{x}_1|\{-(n+a-2)\}}\right|_{0}^{\infty}d\beta_{(-1)}\\ &&=\, 2 \int \frac{n^{-\frac{n+a-1}{p}} \{\max|y_i|+\sum_{l=2}^k|\tilde{x}_l||\beta_l|\}^{-(n+a-2)}}{|\tilde{x}_1|(n+a-2)}d\beta_{(-1)}. \end{array} $$

The integral above can be computed recursively for each element of the vector β ( − 1). The result is convergent as long as n > k + 1 − a, thus

$$ \int_{\mathbb{R}^k}\{h(\beta,p)\}^{-\frac{n+a-1}{p}}d\beta = n^{-\frac{n+a-1}{p}}m_1(y), $$

where \(m_1(y) = \frac{2^k \Gamma(n+a-k-1)\{\max|y_i|\}^{-(n+a-1-k)}}{\Gamma(n+a-1) \prod_{l=1}^{k}|\tilde{x}_l|} > 0\), does not depend on p.

The right integral is

$$ \begin{array}{rll} \int_{\mathbb{R}^{k}}\{g(\beta,p)\}^{-\frac{n+a-1}{p}} d\beta &= & \int_{C_1}\left\{ n\left|\bar{y}-\bar{x}'\beta^* \right|^p \right\}^{-\frac{n+a-1}{p}}d\beta \\ &&+ \int_{C_2}\left\{ n\left|\bar{y}-\bar{x}'\beta \right|^p \right\}^{-\frac{n+a-1}{p}}d\beta\\ &= &\, n^{-\frac{n+a-1}{p}}m_2(y), \end{array} $$

where \(m_2(y) = \int_{C_1} |\bar{y}-\bar{x}'\beta^*|^{-(n+a-1)}d\beta + \int_{C_2} |\bar{y}-\bar{x}'\beta|^{-(n+a-1)}d\beta\) does not depend on p.

Therefore, we have shown that for n > k + 1 − a

$$ m_1(y) \leq n^{\frac{n+a-1}{p}} \int_{-\infty}^{\infty}\left\{\sum\limits_{i=1}^{n}|y_i-x_i'\beta|^p\right\}^{-\frac{n+a-1}{p}}d\beta \leq m_2(y). $$

The result above will allow us to study the tail behavior of the integrated likelihood for p. First, note that from the series expansion of {Γ(z)} − 1 (Abramowitz and Stegun, 1972, p.256) we obtain that {Γ(z)} − 1 ≈ z from z close to 0. Thus, as p goes to ∞ we have Γ(1/p) ≈ p. In addition, considering the first-order Taylor expansion of logΓ(1 + z) around z = 0, logΓ(1 + z) ≈ Ψ(1)z, where Ψ(1) ≈ − 0.5772 is the digamma function evaluated at 1. Thus, \(\Gamma(1+1/p) \approx \mbox{e}^{-0.5772/p}\) for large p. Therefore, for p → ∞,

$$ \begin{array}{rll} L^I(p;y) &\propto &\, p^{-1}\Gamma\left(\frac{n+a-1}{p}\right)\\ &&\times\left\{\Gamma\left(1+\frac{1}{p}\right)\right\}^{-(n+a-1)} \int_{\infty}^{\infty}\left\{\sum_{i=1}^{n}|y_i-x_i'\beta|^p\right\}^{-\frac{n+a-1}{p}}d\beta \\ &\approx &\, p^{-1}\frac{p}{n+a-1}\mbox{e}^{\Psi(1)(n+a-1)/p}O(n^{-(n+a-1)/p})\\ &= &\, O(\mbox{e}^{-\frac{n+a-1}{p}\{\log n - \Psi(1)\}})\\ &= &\, O(1). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, E., Ferreira, M.A. & Migon, H.S. Objective Bayesian analysis for exponential power regression models. Sankhya B 74, 107–125 (2012). https://doi.org/10.1007/s13571-012-0045-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-012-0045-0

Keywords and phrases.

AMS (2000) subject classification.

Navigation