Skip to main content
Log in

A class of bivariate models with proportional reversed hazard marginals

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

Recently the proportional reversed hazard model has received a considerable amount of attention in the statistical literature. The main aim of this paper is to introduce a bivariate proportional reversed hazard model and discuss its different properties. In most of the cases the joint probability distribution function can be expressed in compact forms. The maximum likelihood estimators cannot be expressed in explicit forms in most of the cases. EM algorithm has been proposed to compute the maximum likelihood estimators of the unknown parameters. For illustrative purposes two data sets have been analyzed and the performances are quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarset, M.V. 1987. How to identify a bathtub hazard rate? IEEE Transactions on Reliability 36:106–108.

    Article  MATH  Google Scholar 

  • Bemis, B., Bain, L.J., and Higgins, J.J. 1972. Estimation and hypothesis testing for the parameters of a bivariate exponential distribution. Journal of the American Statistical Association 67:927–929.

    Article  MATH  Google Scholar 

  • Block, H.W., Savits, T.H., and Singh, H. 1998. On the reversed hazard rate function. Probability in the Engineering and Informational Sciences 12:69–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Chandra, N.N., and Roy, D. 2001. Some results on reversed hazard rate. Probability in the Engineering and Informational Sciences 15:95–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Crescenzo, A.D. 2000. Some results on the proportional reversed hazard model. Statistics and Probability Letters 50:313–321.

    Article  MATH  MathSciNet  Google Scholar 

  • Csorgo, S., and Welsh, A.H. 1989. Testing for exponential and Marshall–Olkin distribution. Journal of Statistical Planning and Inference 23:287–300.

    Article  MathSciNet  Google Scholar 

  • Dinse, G.E. 1982. Non-parametric estimation of partially incomplete time and types of failure data. Biometrics 38:417–431.

    Article  Google Scholar 

  • Gupta, R.D., and Kundu, D. 1999. Generalized exponential distribution. Australian and New Zealand Journal of Statistics 41:173–188.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.D., and Nanda, A.K. 2001. Some results on (reversed) hazard rate ordering. Communications in Statistics—Theory and Methods 30:2447–2458.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.D., and Kundu, D. 2007. Generalized exponential distribution: Existing methods and recent developments. Journal of Statistical Planning and Inference 137:3537–3547.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.C., and Gupta, R.D. 2007. Proportional reversed hazard rate model and its applications. Journal of Statistical Planning and Inference 137:3525–3536.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.D., Gupta, R.C., and Sankaran, P.G. 2004. Some characterization results based on the (reversed) hazard rate function. Communications in Statistics—Theory and Methods 33:3009–3031.

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.C., Gupta, P.L., and Gupta, R.D. 1998. Modeling failure time data by Lehmann alternatives. Communications in Statistics—Theory and Methods 27:887—904.

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov, I.A. 1956. On the composition unimodal distribution. Theory of Probability and its Applications 1:255–260.

    Article  Google Scholar 

  • Kundu, D., and Dey, A.K. 2009. Estimating the parameters of the Marshall Olkin bivariate Weibull distribution by EM algorithm. Computational Statistics and Data Analysis 53:956–965.

    Article  MATH  MathSciNet  Google Scholar 

  • Kundu, D., and Gupta, R.D. 2009. Bivariate generalized exponential distribution. Journal of Multivariate Analysis 100:581–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Kundu, D., and Raqab, M.Z. 2005. Generalized Rayleigh distribution: Different methods of estimation. Computational Statistics and Data Analysis 49:187–200.

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann, E.L. 1953. The power of rank test. Annals of Mathematical Statistics 24:23–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Louis, T.A. 1982. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 44:226–233.

    MATH  MathSciNet  Google Scholar 

  • Marshall, A.W., and Olkin, I. 1967. A multivariate exponential distribution. Journal of the American Statistical Association 62:30–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Meintanis, S.G. 2007. Test of fit for Marshall–Olkin distributions with applications. Journal of Statistical Planning and Inference 137:3954–3963.

    Article  MATH  MathSciNet  Google Scholar 

  • Mudholkar, G.S., and Srivastava, D.K. 1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Transactions on Reliability 42:299–302.

    Article  MATH  Google Scholar 

  • Mudholkar, G.S., Srivastava, D.K., and Freimer, M. 1995. The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics 37:436–445.

    Article  MATH  Google Scholar 

  • Nanda, A.K., and Gupta, R.D. 2001. Some properties of reversed hazard function. Statistical Methods, 3:108–124.

    MATH  Google Scholar 

  • Sarhan, A., and Balakrishnan, N. 2007. A new class of bivariate distribution and its mixture. Journal of Multivariate Analysis 98:1508–1527.

    Article  MATH  MathSciNet  Google Scholar 

  • Sarhan, A., and Kundu, D. 2009. Generalized linear failure rate distribution. Communications in Statistics—Theory and Methods 38:642–660.

    Article  MATH  MathSciNet  Google Scholar 

  • Shawky, A.I., and Abu-Zinadah, H.H. 2008. Characterizations of the exponentiated Pareto distribution based on record values. Applied Mathematical Sciences 2:1283–1290.

    MATH  MathSciNet  Google Scholar 

  • Surles, J.G., and Padgett, W.J. 1998. Inference for P(Y < X) in the Burr Type X model. Journal of Applied Statistical Science 7:225–238.

    MATH  Google Scholar 

  • Surles, J.G., and Padgett, W.J. 2001. Inference for reliability and stress-strength for a scaled Burr Type X distribution. Lifetime Data Analysis 7:187–200.

    Article  MATH  MathSciNet  Google Scholar 

  • Surles, J.G., and Padgett, W.J. 2005. Some properties of a scaled Burr type X distribution. Journal of Statistical Planning and Inference 128:271–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Tsodikov, A.D., Aselain, B., and Yakovlev, A.Y. 1997. A distribution of tumor size at detection: An application to breast cancer data. Biometrics 53:1495–1502.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee and the editor Professor Ayanendranath Basu for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu.

Additional information

Part of Debasis Kundu’s work has been supported by a grant from the Department of Science and Technology, Government of India.

Part of Rameshwar D. Gupta’s work has been supported by a discovery grant from NSERC, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, D., Gupta, R.D. A class of bivariate models with proportional reversed hazard marginals. Sankhya B 72, 236–253 (2010). https://doi.org/10.1007/s13571-011-0012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-011-0012-1

Keywords

Navigation