Skip to main content
Log in

Leaning against the wind: low-price benchmarks for acting anticyclically in the metal markets

  • Original Paper
  • Published:
Mineral Economics Aims and scope Submit manuscript

Abstract

Real prices for metals seem to have developed at a constant price level over a long period of time, up to 100 years. Based on real prices for 28 metals, using the US Producer Price Index as a deflator, we have defined long-term and short-term low-price benchmarks. The results show that real prices which developed in cycles or reacted to shocks normally returned to a certain floor price, defined as the long-term low-price benchmark in this study. Using long-term low-price benchmarks as a price signal is a useful tool for investors and buyers to act anticyclically between cycles or shocks, either to secure long-term offtake agreements or to farm into new mining assets at a low price. A combined analysis with average real total cash cost data for 11 mineral raw materials supports the low-price benchmark approach and leads to a discussion whether the lessons of the past hold true for the future. We propose that these learning effects still take place and, in consequence, the long-term real price benchmarks may be extrapolated into the next decade. However, it is possible that the cost pressure to retain or obtain the social licence to operate increases to such a degree that technical rationalization cannot keep up with the cost increases. Consequently, the operating costs at mines and the ratio of the established long-term low-price benchmark to the total cash costs are important aspects to monitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Plate 1
Plate 2
Plate 3
Plate 4
Plate 5

Similar content being viewed by others

References

  • acatech (2018) National Academy of Science and Engineering, German National Academy of Sciences Leopoldina, Union of the German Academies of Sciences and Humanities Raw materials for the energy transition—securing a reliable and sustainable supply. Position paper, Schriftenreihe Energiesysteme der Zukunft, Munich, Berlin (acatech), 100 p https://www.acatech.de/Publikation/raw-materials-for-the-energy-transition-securing-a-reliable-and-sustainable-supply/. Accessed 30 July 2018

  • Arrington LJ, Hansen GB (1963) “The Richest Hole on Earth”—a history of the Bingham copper mine. Utah State University Press, Monograph Series, Vol XI, 1, 103 p

  • BLS - Bureau of Labor Statistics (2014) Comparing the Producer Price Index for Personal Consumption with the U.S. All Items CPI for All Urban Consumers. https://www.bls.gov/ppi/ppicpippi.htm. Accessed 25 August 2018

  • BMWi (2018) Federal Ministry for Economics and Energy: Garantien für Ungebundene Finanzkredite. https://www.bmwi.de/Redaktion/DE/Artikel/Aussenwirtschaft/garantien-fuer-ungebundene-kredite.html. Accessed 28 August 2018

  • Bräuninger M, Leschus L, Rosen A (2013) Ursachen von Preispeaks, −einbrüchen und –trends bei mineralischen Rohstoffen. DERA Rohstoffinformationen 17, Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Berlin: 123 p

  • Bray EL (2013) Aluminium. Metal prices in the United States through 2010. Scientific Investigations Report 2012–5188. U.S. Geological Survey, Reston, pp 2–6

    Google Scholar 

  • Carlin JF Jr (2013) Bismuth. Metal prices in the United States through 2010. Scientific Investigations Report 2012–5188. U.S. Geological Survey, Reston, pp 17–18

    Google Scholar 

  • Chen MH (2010) Understanding world metal prices—returns, volatility and diversification. Res Policy 35:127–140

    Article  Google Scholar 

  • Connolly E, Orsmond D (2011) The mining industry: from bust to boom. Reserve Bank of Australia, Conference 2011, Chapter 4.2.4, https://www.rba.gov.au/publications/confs/2011/connolly-orsmond.html. Accessed 5 October 2018

  • Cortez CAT, Saydam S, Coulton J, Sammut C (2018) Alternative techniques for forecasting mineral commodity prices. Int J Min Sci Technol 28(2 March 2018):309–322

    Article  Google Scholar 

  • Cuddington JT (2010) Long-term trends in the real real prices of primary commodities: inflation bias and the Prebisch-Singer hypothesis. Resour Policy, Elsevier 35(2):72–76

    Article  Google Scholar 

  • Damm, S (2018) Rohstoffrisikoanalyse Tantal. DERA-Rohstoffinformationen 31, Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 85 p. https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/DERA_Rohstoffinformationen/rohstoffinformationen-31.pdf?__blob=publicationFile&v=4. Accessed 02 July 2019

  • Deutsche Bank (2016) Industry Lithium, 101, Sydney, p. 177 http://www.metalstech.net/wp-content/uploads/2016/07/17052016-Lithium-research-Deutsche-Bank.compressed.pdf. Accessed 02 July 2019

  • Drachal K (2018) Some novel Bayesian model combination schemes: an application to commodities prices. Sustainability 10(2801):1–27 https://www.researchgate.net/publication/326883169_Some_Novel_Bayesian_Model_Combination_Schemes_An_Application_to_Commodities_Prices. Accessed 02 July 2019

  • Erten B, Ocampo JA (2013) Super cycles of commodity prices since the mid-nineteenth century. World Dev 44:14–30

    Article  Google Scholar 

  • EY (2019) Business risks facing mining and metals 2018–2019. https://assets.ey.com/content/dam/ey-sites/ey-com/global/topics/mining-metals/mining-metals-pdfs/ey-top-10-business-risks-facing-mining-and-metals-in-2019-20.pdf. Accessed 25 January 2019

  • Ezekiel M (1938) The cobweb theorem. Q J Econ 52(1):255–280

    Article  Google Scholar 

  • Fernandez V (2012) Trends in real commodity prices: how real is real. Res Policy 37(1):30–47

    Article  Google Scholar 

  • Fey S (1982) The great silver bubble. Hodder & Stoughton General Division, London 275 p

    Google Scholar 

  • Gleich B (2014) Der Preis mineralischer Rohstoffe: Zeittrend und Einflussfaktoren. Neue empirische Antworten auf eine alte Fragestellung mit Implikationen für Wirtschaft und Gesellschaft. Dissertation, Cuvillier Verlag Göttingen, 324 p

  • Government of Alberta (2019) How to use charting to analyse commodity markets. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/sis10136. Accessed 16 May 2019

  • Halme K, Piirainen KA, Vekinis G, Sievers Eu, Viljamaa (2012) Substitutionability of critical raw materials. Policy Department A: Economic and Scientific Policy, Directorate General for Internal Policies (eds), PE 492.448, Brussels, 100 p https://www.researchgate.net/publication/262198504_Substitutionability_of_Critical_Raw_Materials. Accessed 15 January 2019

  • Hanau A (1928) Die Prognose der Schweinepreise. Vierteljahreshefte zur Konjunkturforschung, Sonderheft Vol 7. Institut für Konjunkturforschung, Berlin 44 p

    Google Scholar 

  • He K, Lu X, Zou Y, Lai KK (2015) Forecasting metal prices with a curvelet based multiscale methodology. Res Policy 45(C):144–150

    Article  Google Scholar 

  • Hilpert HG, Mildner SA (eds) (2013) Nationale Alleingänge oder internationale Kooperation? Analyse und Vergleich der Rohstoffstrategien der G20-Staaten. Stiftung Wissenschaft und Politik, Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin/Hannover. https://www.bgr.bund.de/DE/Themen/Zusammenarbeit/TechnZusammenarbeit/Politikberatung_SV_MER/Downloads/SWP-studien_2013-S01.pdf?__blob=publicationFile&v=1. Accessed 29 August 2018

  • Humphreys D (2010) The great metals boom: a retrospective. Res Policy 35:1–13

    Article  Google Scholar 

  • Jerrett D, Cuddington JT (2008) Broadening the statistical search for metal price supercycles to steel and related metals. Res Policy 33:188–195

    Article  Google Scholar 

  • Julihn CE (1932) Copper: an example of advancing technology and the utilization of low-grade ores. In: Tyron FG, Eckel EC (eds) Mineral Economics, Chapter VI, A.I.M.E. Series. McGraw-Hill, New York, pp 111–136

    Google Scholar 

  • Kilian L (2009) Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review 99(3):1053–1069

  • Kramer JA (2013) Magnesium. Metal prices in the United States through 2010. Scientific Investigations Report 2012–5188, U.S. Geological Survey, Reston: 88–90

  • Leong R (2018) U.S. dollar share of global currency reserves fall further–IMF. https://www.reuters.com/article/uk-forex-reserves/u-s-dollar-share-of-global-currency-reserves-fall-further-imf-idUSKBN1JR21G. Accessed 25 August 2018

  • de Linde JP (1995) Ferroalloy markets. In: Tuset JK, Tveit H, Page IG (eds) Norwegian Ferroalloy Organization, Infacon 7, 11.-14. June 1995, Trondheim, Norway, pp 39–62

    Google Scholar 

  • Luyken W, Bierbrauer E (1931) Die geschichtliche Entwicklung der Flotation. In: Luyken W, Bierbrauer E (eds) Die Flotation in Theorie und Praxis. Springer, Berlin, pp 2–19

    Chapter  Google Scholar 

  • Lynch A (2018) The eras of mineral processing. In: Wood D (2018) Geology and mining: an introduction and overview. SEG Newsletter, 115, 1: 9–21

  • Melcher F, Buchholz P (2014) Germanium. In: Gun G (ed) Critical metals handbook. Wiley, Chichester, pp 177–203

    Google Scholar 

  • Ober JA (1999) Lithium in 1998. Minerals Yearbook, U.S. Geological Survey, United States Government Printing Office, Washington, DC 8 p

    Google Scholar 

  • Ober JA (2007) Lithium in 2006. Minerals Yearbook, U.S. Geological Survey, United States Government Printing Office, Washington, DC 8 p

    Google Scholar 

  • Parsons R, Moffat K (2014) Constructing the meaning of social licence. Soc Epistemol 28(3–4):340–363

    Article  Google Scholar 

  • Plunkert A, Jones TS (1999) Metal prices in the United States through 1998. U.S. Geological Survey, United States Government Printing Office, Washington, DC 179 p

    Google Scholar 

  • PricewaterhouseCoopers (2016) Mine 2016—slower, lower, weaker… but not defeated. Review of global trends in the mining industry. Global Mining Leadership Team, PricewaterhouseCoopers 50 p. https://www.pwc.com/gx/en/mining/pdf/mine-2016.pdf. Accessed 15 Jan 2019

  • Prno J (2013) An analysis of factors leading to the establishment of a social licence to operate in the mining industry. Res Policy 38:577–590

    Article  Google Scholar 

  • Radetzki M, Wårell L (2017) A handbook of primary commodities in the global economy. Cambridge University Press, Cambridge 305 p

    Book  Google Scholar 

  • Reuters (2016) Japan passes law to allow JOGMEC to invest in foreign oil, gas firms. 11.11.2016. https://www.reuters.com/article/us-japan-jogmec-idUSKBN1360UC. Accessed 29 August 2018

  • Roberts MC (2009) Duration and characteristics of metal price cycles. Res Policy 34:87–102

    Article  Google Scholar 

  • Rosenau-Tornow D, Buchholz P, Riemann A, Wagner M (2009) Assessing long-term supply risks for mineral raw materials—a combined evaluation of past and future trends. Res Policy 34:161–175

    Article  Google Scholar 

  • Roskill Information Services Ltd (2016) Blast furnace iron production and usage of magnesium for desulphurization. International Magnesium Association Conference, Rome, Italy, May 15-17, unpublished presentation

  • Rossen A (2015) What are metal prices like? Co-movement, price cycles and long-run trends. Res Policy 45:255–276

    Article  Google Scholar 

  • S&P Global Market Intelligence (2018) Mine economics methodology—mine economics cost curves. S&P Global Market Intelligence, commercial access 5. October 2018

  • Schmidt, M (2017) Rohstoffrisikoanalyse Lithium. DERA-Rohstoffinformationen Nr. 33, Deutsche Rohstoffagentur in der Bundesanstalt für Geowissenschaften und Rohstoffe, 134 p https://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/Studie_lithium_2017.pdf?__blob=publicationFile&v=3. Accessed 02 July 2019

  • Schwerhoff G, Stürmer M (2016) Non-renewable resources, extraction technology, and endogenous growth. Federal Reserve Bank of Dallas Working Paper No. 1506, 38 p

  • Stürmer M (2018) 150 years of boom and bust: what drives mineral commodity prices? Macroecon Dyn 22(3):702–717

    Article  Google Scholar 

  • Svedberg P, Tilton JE (2006) The real, real price of nonrenewable resources: copper 1870-2000. World Dev 34(3):501–519

    Article  Google Scholar 

  • Svedberg P, Tilton JE (2011) Long-term trends in the real real prices of primary commodities: inflation bias and the Prebisch-Singer hypothesis. Res Policy 36(1):91–93

    Article  Google Scholar 

  • Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. Resources for the Future, Washington, D.C., Routledge 158 p

  • Tilton JE, Crowson PCF, DeYoungJr JH, Eggert RG, Ericsson M, Guzmán JI, Humphreys D, Lagos G, Maxwell P, Radetzki M, Singer DA, Wellmer FW (2018) Public policy and future mineral supplies. Res Policy 57:55–60

    Article  Google Scholar 

  • Wellmer FW, Dalheimer M (2012) The feedback control cycle as regulator of past and future mineral supply. Mineral Deposita 47(7):713–729

    Article  Google Scholar 

  • Wellmer FW, Hagelüken C (2015) The feedback control cycle of mineral supply, increase of raw material efficiency, and sustainable development. Minerals 5:815–836

    Article  Google Scholar 

  • Wellmer FW, Dalheimer F, Wagner M (2008) Economic evaluations in exploration. Springer, Berlin 250 p

    Google Scholar 

  • Wellmer FW, Buchholz P, Gutzmer J, Hagelüken C, Herzig P, Littke R, Thauer RK (2018) Raw materials for future energy supply. Springer, Berlin 255 p

    Google Scholar 

  • World Bank Group (2018) Global economic prospects—the turning of the tide? World Bank Publications, The World Bank Group, Washington DC 184 p

    Google Scholar 

  • World Bank Group (2019) GDP growth (annual %), World Bank national accounts data, and OECD National Accounts data files, 1965–2017, all countries. https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?end=2017&start=1961&view=chart, Accessed 25 April 2019

  • World Gold Council (2019) The Bretton Woods system. https://www.gold.org/about-gold/history-of-gold/bretton-woods-system. Accessed 2 July 2019

Download references

Acknowledgments

This research was conducted with internal funds at the Federal Institute for Geosciences and Natural Resources (BGR, German Geological Survey). The research is part of the Raw Materials Monitoring System at the German Mineral Resources Agency (DERA) at the BGR. DERA was assigned by the Federal Ministry of Economics and Energy (BMWi) in 2013 to build up the monitoring system which was mandated by the German Government through the German coalition agreement of 2013 between the German parties CDU/CSU and SPD.

We would like to thank the reviewers of this paper for their valuable contributions and comments, Dr. Gus Gunn for proof-reading of the English language and helpful comments regarding individual metal markets, and colleagues at the BGR who compiled historic price data over previous decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Buchholz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, P., Wellmer, FW., Bastian, D. et al. Leaning against the wind: low-price benchmarks for acting anticyclically in the metal markets. Miner Econ 33, 81–100 (2020). https://doi.org/10.1007/s13563-019-00199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13563-019-00199-y

Keywords

Navigation