Skip to main content
Log in

Exploring the master regulator heat stress transcription factor HSFA1a-mediated transcriptional cascade of HSFs in the heat stress response of tomato

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The tomato heat stress transcription factor A1a (Sly-HSFA1a) acts as the master regulator of the heat stress (HS) by directly regulating the transcription of Sly-HSFA2. However, it is unclear whether the activation of Sly-HSFA2 alone is sufficient to trigger the entire transcriptional cascade downstream of Sly-HSFA1a. Therefore, the present study aims to delineate the Sly-HSFA1a governed downstream HSFs cascade regulating the tomato heat stress response. The study identified several HSFs with common and specific roles in different HS regimes as well as in HS memory. Furthermore, the study established Sly-HSFA7, Sly-HSFA6b, Sly-HSFA4c, Sly-HSFB1 and Sly-HSFB2b as new downstream targets of Sly-HSFA1a during heat stress by using virus-induced-gene-silencing (VIGS) of Sly-HSFA1a. Moreover, the silencing of downstream target Sly-HSFA7 and Sly-HSFB1 revealed the orchestration of downstream transcriptional cascade of HSFs regulated individually or in a synergistic manner by Sly-HSFA1a and Sly-HSFA7 along with co-activator Sly-HSFB1. This complex transcriptional cascade of HSFs sheds light on regulatory mechanisms that enable tomato plants to respond to various heat stress conditions to maintain cellular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HSF:

Heat stress transcription factor

VIGS:

Virus induced gene silencing

TRV:

Tobacco Rattle Virus

HS:

Heat stress

HSR:

Heat stress response

HSE:

Heat stress element

HSP:

Heat shock protein

References

  • Albihlal WS, Obomighie I, Blein T, Persad R, Chernukhin I, Crespi M, Bechtold U, Mullineaux PM (2018) Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. J Exp Bot 69(11):2847–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S (2020) Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent. Plant Biotechnol J 18(10):2118

    Article  CAS  PubMed Central  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152(3):1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PA, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL (2013) Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot 64(11):3467–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti K, von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16(6):1521–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch W, Wunderlich M, Schöffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SS, Jiang J, Han XJ, Zhang YX, Zhuo RY (2018) Identification, expression analysis of the Hsf family, and characterization of class A4 in Sedum alfredii hance under cadmium stress. Int J Mol Sci 19(4):1216

    Article  PubMed Central  Google Scholar 

  • Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC (2019) PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res 47(D1):D1155–D1163

    Article  PubMed  Google Scholar 

  • Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12(2):265–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61(2):453–462

    Article  CAS  PubMed  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23(2):741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han N, Fan S, Zhang T, Sun H, Zhu Y, Gong H, Guo J (2020) SlHY5 is a necessary regulator of the cold acclimation response in tomato. Plant Growth Regul 91(1):1–12

    Article  Google Scholar 

  • Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L (2001) The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol 21(5):1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hübel A, Schöffl F (1994) Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol 26(1):353–362

    Article  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, Von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39(1):98–112

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19(1):182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Busch W, Birke H, Kemmerling B, Nurnberger T, Schöffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2:152–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146(2):748–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL (2012) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot 63(3):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genom 12(1):1–4

    Article  Google Scholar 

  • Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163(1):276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34(5):738–751

    Article  CAS  PubMed  Google Scholar 

  • Liu AL, Zou J, Liu CF, Zhou XY, Zhang XW, Luo GY, Chen XB (2013) Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Rep 46(1):31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47(9):785–795

    Article  CAS  PubMed  Google Scholar 

  • Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138(3):1310–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48(4):535–547

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52(5):933–945

    Article  CAS  PubMed  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6(3):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohama N, Kusakabe K, Mizoi J, Zhao H, Kidokoro S, Koizumi S, Yamaguchi-Shinozaki K (2016) The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 28(1):181–201

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Rao S, Mathur S (2016) The α-crystallin domain containing genes: identification, phylogeny and expression profiling in abiotic stress, phytohormone response and development in tomato (Solanum lycopersicum). Front Plant Sci 7:426

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y (2016) The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS ONE 11:e0151067

    Article  PubMed  PubMed Central  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12(4):479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Jha S, Bansal C, Gupta A, Sorin C, Crespi M and Mathur S (2021) A conserved HSF: miR169: NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. bioRxiv 2021.01.01.425064. https://doi.org/10.1101/2021.01.01.425064

  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160(2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27(1):295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci 103(49):18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97(5):731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26(12):4954–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Rose S, Zott W, Schöffl F, Nover L, Schöff F (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9(13):4495–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18(4):2240–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta Gene Regul Mech 1819(2):104–119

    Article  CAS  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60(5):759–772

    Article  CAS  PubMed  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53(2):264–274

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562

    Article  CAS  PubMed  Google Scholar 

  • Song X, Liu G, Duan W, Liu T, Huang Z, Ren J, Li Y, Hou X (2014) Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Mol Genet Genomics 289(4):541–551

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283(14):9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14(6):691–699

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Xu L, Wang Y, Cheng W, Luo X, Xie Y, Fan L, Liu L (2019) Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.). BMC Genom 20(1):1–3

    Article  Google Scholar 

  • Treuter E, Nover L, Ohme K, Scharf KD (1993) Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol Gen Genet 240(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, Suzuki N, Miller G, Van De Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC, Van Breusegem F (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci 108(4):1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Wang J, Sun N, Deng T, Zhang L, Zuo K (2014) Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genom 15(1):1–9

    Article  Google Scholar 

  • Wei Y, Liu G, Chang Y, He C, Shi H (2018) Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol Plant Pathol 19(10):2209–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlich M, Doll J, Busch W, Kleindt CK, Lohmann C, Schöffl F (2007) Heat shock factors: regulators of early and late functions in plant stress response. Plant Stress 1(1):16–22

    Google Scholar 

  • Xin H, Zhang H, Zhong X, Lian Q, Dong A, Cao L, Yi M, Cong R (2017) Over-expression of LlHsfA2b, a lily heat shock transcription factor lacking trans-activation activity in yeast, can enhance tolerance to heat and oxidative stress in transgenic Arabidopsis seedlings. Plant Cell Tissue Organ Cult 130(3):617–629

    Article  CAS  Google Scholar 

  • Xue GP, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot 65(2):539–557

    Article  CAS  PubMed  Google Scholar 

  • Yan MY, Xie DL, Cao JJ, Xia XJ, Shi K, Zhou YH, Zhou J, Foyer CH, Yu JQ (2020) Brassinosteroid-mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. Plant J 102(5):931–947

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhu W, Zhang H, Liu N, Tian S (2016) Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. PeerJ 4:e1961

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368(3):515–521

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genom 286(5):321–332

    Article  CAS  Google Scholar 

  • Zang D, Wang J, Zhang X, Liu Z, Wang Y (2019) Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. J Exp Bot 70:5355–5374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from NIPGR. The authors acknowledge the phytotron facility, CIF and field area provided by NIPGR. The authors are thankful to DBT-eLibrary Consortium (DeLCON) for providing access to e-resources. SR acknowledges Department of Biotechnology (DBT) Govt. of India and JRD acknowledges Council of Scientific and Industrial Research (CSIR) for the award of research fellowships.

Author information

Authors and Affiliations

Authors

Contributions

SM designed and supervised the study; SR designed and performed all the experiments and analysed the data. SR and SM wrote the article; JRD complemented the writing and critically reviewed the manuscript. SM agrees to serve as the author responsible for contact and ensures communication.

Corresponding author

Correspondence to Saloni Mathur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S., Das, J.R. & Mathur, S. Exploring the master regulator heat stress transcription factor HSFA1a-mediated transcriptional cascade of HSFs in the heat stress response of tomato. J. Plant Biochem. Biotechnol. 30, 878–888 (2021). https://doi.org/10.1007/s13562-021-00696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00696-8

Keywords

Navigation