Skip to main content

Advertisement

Log in

Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Salinity is a crucial environmental constraint that reduces plant productivity. However, plants activate different signaling pathways to overcome the abiotic stress. The NHX (Na+/H+ exchanger) antiporter corresponds to one of the antiporters involved in response to salinity. They are known to be responsible for the vacuole compartmentation of toxic Na+. In this report, a grapevine vacuolar antiporter (VvNHX1) cDNA was introduced into potato, response of transgenic plants to salinity was evaluated under in vitro and greenhouse culture conditions. The transgenic plants showed higher growth rate than wild type (WT) after the salinity treatment suggesting an improved tolerance both in vitro and under greenhouse culture conditions. In addition, a lower oxidative stress level was observed while a higher relative water and soluble sugar content were measured in transgenic plants compared to WT plants. Furthermore, in contrast to WT plants, the transgenic plants displayed an increase of leaf ion (K+, Mg2+) content and a decline in Na+ accumulation. The increase in the antioxidant enzyme activities in transgenic plants suggests that they can overcome oxidative stress resulting from salt treatment. The measurement of the tuber yield and the weight loss of plants sprinkled with 100 mM NaCl in the greenhouse showed a low negative effect on transgenic plants (12.5 and 40%) in comparison to WT (80%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

NHX:

Na+/H+ antiporter

SOD:

Superoxide dismutase

CAT:

Catalase

GPX:

Gluthatione peroxidase

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

RWC:

Relative water content

ANOVA:

Analysis of variance

WT:

Wild type

References

  • Alexieva V, Sergio I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta Vulgaris. Plant Physiol 24:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barragán V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active K uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biotechnol. https://doi.org/10.5402/2012/927436

    Article  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Chen X, Wu BY, Yuan XX, Zhang HM, Cui XY, Liu XQ (2015) Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean. J Integ Agri 14:1171–1183

    Article  CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Dellaporta SL, Woods J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Duan XW, Liu T, Zhang DD, Su XG, Lin HT, Jiang YM (2011) Effect of pure oxygen atmosphere on antioxidant enzyme and antioxidant activity of harvested litchi fruit during storage. Food Res Inter 44:1905–1911

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric Method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Floh L, Gunzler WA (1984) Glutathione peroxidase. Methods Enzymol 105:115–121

    Google Scholar 

  • Gargouri-Bouzid R, Jaoua L, Ben Mansour R, Hathat Y, Ayadi M, Ellouz R (2005) PVY resistant transgenic potato plants (CV Claustar) expressing the viral coat. Protein Plant Biotechnol 7:143–148

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Hanana M, Cagnac O, Yamaguchi T, Hamdi S, Ghorbel A, Blumwald E (2007) A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Plant Cell Physiol 48:804–811

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463

    Article  PubMed  CAS  Google Scholar 

  • Islam ST, Seraj ZI (2009) Vacuolar Na+/H+ Antiporter expression and salt tolerance conferred by actin1D and CaMV35S are similar in transgenic binna to a rice. Plant Tiss Cult Biotechnol 19:257–262

    Article  Google Scholar 

  • Kikuchi A, Huynh HD, Endo T, Watanabe K (2015) Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breed Sci 65:85–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz T, Cubero B, Fernádez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates K compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506

    Article  PubMed  CAS  Google Scholar 

  • Li TX, Zhang Y, Liu H, Ting WY, Li WB, Zhang HX (2010a) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations. Chin Sci Bull 55:1127–1134

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010b) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M26 and its influence on salt tolerance. Plant Cell Tiss Org Cult 102:337–345

    Article  CAS  Google Scholar 

  • Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H (2010) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol 53:444–452

    Article  CAS  Google Scholar 

  • Maathuis FJM (2013) Na + in plants: perception, signaling and regulation of Na + fluxes. J Exp Bot 65:849–858

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Alavilli H, Lee B, Panda SK, Sahoo L (2014a) Cloning and Functional Characterization of a Vacuolar Na+/H+ antiporter gene from Mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS ONE. https://doi.org/10.1371/journal.pone.0106678

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Behura R, Awasthi JP, Dey M, Sahoo D, Das Bhowmik SS, Panda SK, Sahoo L (2014b) Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vignaun guiculata L. Walp Mol Breed 34:1345–1359

    Article  CAS  Google Scholar 

  • Morel G, Wetmore RH (1951) Fern Callus tissue culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Rodríguez AA, Lascano HR, Bustos D, Taleisnik E (2007) Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone. J Plant Physiol 164:223–230

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Saïdi MN, Gargouri-Bouzid R, Rayanni M, Drira N (2009) Optimization of RNA isolation from Brittle leaf disease affected date palm leaves and construction of a subtractive cDNA library. Mol Biotechnol 41:63–68

    Article  CAS  Google Scholar 

  • Tian N, Wang J, Xu ZQ (2011) Overexpression antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwi fruit (Actinidia deliciosa). South Afri J Bot 77:160–169

    Article  CAS  Google Scholar 

  • Väänänen D, Ikonen T, Rokka VM, Kuronen P, Serimaa R, Ollilainen V (2005) Influence of incorporated wild Solanum genomes on potato properties in terms of starch nanostructure and glycoalkaloid content. J Agri Food Chem 53:5313–5325

    Article  CAS  Google Scholar 

  • Vaewoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Res 17:23–62

    Google Scholar 

  • Wang LJ, Zhang J, Wang D, Zhang J, Cui Y, Liu Y, Yang H, Binyu (2010) Assessment of salt tolerance in transgenic potato carrying AtNHX1 gene. Crop Sci 53:2643–2651

    Article  CAS  Google Scholar 

  • Wu XX, Li J, Wu XD, Liu Q, Wang ZK, Liu SS, Li SN, Ma YL, Sun J, Zhao L, Li HY, Li DM, Li WB, Su AY (2016) Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Genet Mol Res. https://doi.org/10.4238/gmr.15027483

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Fukuda-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Iida S (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol 42:451–461

    Article  PubMed  CAS  Google Scholar 

  • Yuanchun M, Wang J, Zhong Y, Geng F, Grant RC, Cheng ZM (2015) Subfunctionalization of cation/proton antiporter 1 genes in grapevine in response to salt stress in different organs. Horti Res 2:15031

    Article  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL (2015) The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular K. Plant Mol Biotechnol 87:317–327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Tunisian Ministry of High Education and Scientific Research. The authors thank to Anne-Lise Haenni from the Institute Jacques Monod (France) and Mrs Najoua Neifar english teacher from the University of Sfax-Tunisia and Miss cyrine Bouzid from ODDO BHF for improving the English throughout the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SC and MC carried out the experimental work. The insertion of the VvNHX1 gene into the pCAMBIA99.1 vector was generated by MH. RGB participated in the data analysis and contributed in writing and revising the manuscript.

Corresponding author

Correspondence to Safa Charfeddine.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charfeddine, S., Charfeddine, M., Hanana, M. et al. Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. J. Plant Biochem. Biotechnol. 28, 50–62 (2019). https://doi.org/10.1007/s13562-018-0462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0462-x

Keywords

Navigation