Skip to main content
Log in

Ascorbic acid at pre-anthesis modulate the thermotolerance level of wheat (Triticum aestivum) pollen under heat stress

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The reproductive stage of wheat is highly sensitive to the heat stress, especially pollen viability. Here, we report the alterations in the expression of heat shock proteins and antioxidant enzymes in wheat pollen of thermotolerant (C-306) and susceptible (HD2329) cultivars under the heat shock (42 °C, 2 h) with or without ascorbic acid (400 mM) treatment. A significant fold change in expression of catalase (CAT) and ascorbate peroxidase (APX) was observed in the pollens of HD2329 in response to 400 mM ascorbic acid (AsA) before heat stress (T1). The SOD transcript was observed significantly high in C-306 pollens compared to HD2329 in response to T1. The transcripts of high and low molecular weight HSPs (HSP70, HSP90, HSP17 and HSP26) were very high in pollens of C-306 as compared to HD2329. Semi-quantitative RT-PCR showed marked variations in the transcript of HSPs and antioxidant enzymes in pollens of C-306 and HD2329 under T0 and T1 treatments. 1D and 2D polyacrylamide gel electrophoresis of pollens showed more differentially expressed proteins in C-306 than in HD2329 in response to T1. A significant increase in the accumulation of osmolyte (proline), H2O2 and endogenous AsA levels were observed in the pollens of C-306 than in HD2329, in response to T0 and T1 treatments. Immunoblot analysis using monoclonal antibodies of HSP70 and HSP90 showed abundance of HSP70 proteins in the pollens of C-306 and HSP90 proteins in pollens of HD2329. Scanning electron microscopy of pollen under the heat stress showed disintegrated and dehydrated exine layer and alteration in pollen structure from spheroid to ovoid in both the cultivars. The pollen viability was found to be less in HD2329 than in C-306 in response to T1 treatment. A significant increase in the total antioxidant capacity was observed in pollens of C-306 as compared to HD2329 in response to the treatments. Findings indicate that pre-anthesis treatment of 400 mM AsA before HS (42 °C, 2 h) enhances the thermotolerance capacity of wheat pollens, as assessed through biochemical markers; further investigations on similar elicitors may yield useful information on mitigating the effect of the terminal heat on reproductive system of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HSP:

Heat shock protein

HS:

Heat stress

qRT-PCR:

Quantitative real time PCR

SEM:

Scanning electron microscopy

AsA:

Ascorbic Acid

ROS:

Reactive Oxygen Species

2-DE:

Two Dimensional Electrophoresis

1-DE:

One Dimensional Electrophoresis

PAGE:

Polyacrylamide Gel Electrophoresis

FRAP:

Ferric Reducing Antioxidant Power

References

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Barnaba’s B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of the total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao F, Cheng H, Cheng S, Li L, Xu F, Yu W, Yuan H (2012) Expression of selected Ginkgo biloba heat shock protein genes after cold treatment could be induced by other abiotic stress. Int J Mol Sci 13(5):5768–5788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Challinor AJ, Wheeler TR, Slingo JM (2005) Simulation of the impact of high temperature stress on the yield of an annual crop. Agric For Meteorol 135:180–189

    Article  Google Scholar 

  • Chen Y, Liu P, Hoehenwarter W, Lin J (2012) Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J Proteome Res 11(8):4180–4190

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  • Firon N, Pressman E, Meir S, Khoury R, Altahan L (2012) Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants. pls024 doi: 10.1093/aobpla/pls024

  • Foyer CH, Lopez-Delgardo H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. JCB 168(1):17–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61(2):453–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Gen Res 19:1786–1800

    Article  CAS  Google Scholar 

  • Harper JF, Zinn KE, Tunc-Ozdemir M (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    Article  PubMed Central  PubMed  Google Scholar 

  • Hossain A, Teixeira da Silva JA (2013) Wheat production in Bangladesh: its future in the light of global warming. AoB Plants 5:pls042. doi:10.1093/aobpla/pls042

    Article  PubMed Central  PubMed  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L). J Exp Bot 61:143–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi AK, Mishra B, Chatrath R, Ferrara GO, Singh RP (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446

    Article  Google Scholar 

  • Kumar RR, Goswami S, Kumar N, Pandey SK, Pandey VC, Sharma SK, Pathak H, Rai RD (2011) Expression of novel ascorbate peroxidase isoenzymes of wheat (Triticum aestivum L) in response to heat stress. Int J Plant Physiol Biochem 3(11):188–194

    CAS  Google Scholar 

  • Kumar RR, Goswami S, Sharma SK, Singh K, Gadpayle KA, Singh SD, Pathak H, Rai RD (2012) Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. J Plant Biochem Biotechnol. doi:10.1007/s13562-012-0106-5

    PubMed Central  PubMed  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nat 227:680–685

    Article  CAS  Google Scholar 

  • Lansac AR, Sullivan CY, Johnson BE (1996) Accumulation of free proline in sorghum (Sorghum bicolor) pollen. Can J Bot 74:40–45

    Article  CAS  Google Scholar 

  • Leja M, Wyzgolik G, Kaminska I (2007) Some parameters of antioxidant capacity of red cabbage as related to different forms of nutritive nitrogen. Folia Hort 19(1):15–23

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Supporting online materials for: prioritizing climate change adaptation needs for food security in 2030. Sci 319:607–610

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Moot DJ, Henderson AL, Porter JR, Semenov MA (1996) Temperature, CO2 and the growth and development of wheat: changes in the mean and variability of growing conditions. Clim Change 33:351–368

    Article  CAS  Google Scholar 

  • Muller-Moule P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grows in high light despite chronic photoxidative stress. Plant Physiol 134:1163–1172

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):45

    Article  Google Scholar 

  • Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genetics 5:e1000621

    Article  PubMed Central  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New age international (P) Limited, Publishers, II (ed), New Delhi, 152–160

  • Sakata T, Takahashi H, Nishiyama I, Higashitani A (2000) Effects of high temperature on the development of pollen mother cells and microspores in barley Hordeum vulgare L. J Plant Res 113:395–402

    Article  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genom 10:393

    Article  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Schoffl F, Prandl R, Reindl A (1998) Regulation of the heat shock response. Plant Physiol 117:1135–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and c-amino butyric acid in tomato pollen. Plant Cell 11:377–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifacetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Stone P (2001) The effects of heat stress on cereal yield and quality. In: AS Basra (Ed) Crop responses and adaptations to temperature stress, food products press, Binghamton, NY, pp 243–291

  • Thomas JMG, Prasad PVV (2003) Plants and the environment / global warming effects. University of Florida, Gainesville

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Shang Z, Wu J, Jiang X, Moschou PN, Sun W, Roubelakis-Angelakis KA, Zhang S (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author’s sincerely thanks Indian Agricultural Research Institute (IARI) and Indian Council of Agriculture Research (ICAR) for providing the financial assistance under the National Initiative for Climate Resilient Agriculture (NICRA) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet R. Kumar.

Additional information

Ranjeet R. Kumar and Suneha Goswami equal contribution made by both the authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.R., Goswami, S., Gadpayle, K.A. et al. Ascorbic acid at pre-anthesis modulate the thermotolerance level of wheat (Triticum aestivum) pollen under heat stress. J. Plant Biochem. Biotechnol. 23, 293–306 (2014). https://doi.org/10.1007/s13562-013-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0214-x

Keywords

Navigation