Skip to main content
Log in

An Extensive Analysis of Dye-Sensitized Solar Cell (DSSC)

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the 1800s, as the primary energy resource, the industrial revolution started with fossil fuels. Various research efforts have been carried out in finding an alternative for photovoltaic devices to traditional silicon (Si)-based solar cells. During the last three decades, dye-sensitized solar cells (DSSCs) have been investigated largely. DSSCs due to their simple preparation methodology, low cost, ease of production, and low toxicity have been used widely. This review helps the readers to fabricate the DSSC and to familiarize themselves with the operation and overview of DSSC principles and to improve the efficient possible routes for these devices to thrive and emerge. In addition to that, manufacturing, stability, and efficiency improvements need to be addressed in the future for these technologies to be discussed and to represent their suitability as a breakthrough of consumer electronics in the market. An overview of developing current prototypes of DSSC and products of the main companies is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Atli, A. Yildiz, Opaque Pt counter electrodes for dye-sensitized solar cells. Int. J. Energy Res. 46(5), 6543–6552 (2022)

    Google Scholar 

  2. A. Yildiz, T. Chouki, A. Atli, M. Harb, S.W. Verbruggen, R. Ninakanti, S. Emin, Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells. ACS Appl. Energy Mater. 4(10), 10618–10626 (2021)

    Google Scholar 

  3. Q. Abbas, M. Mirzaeian, M.R.C. Hunt, Materials for sodium-ion batteries. In Reference Module in Materials Science and Materials Engineering. Elsevier B.V., Amsterdam. (2020). https://doi.org/10.1016/B978-0-12-803581-8.12115-0

  4. D. Devadiga, M. Selvakumar, P. Shetty, M.S. Santosh, Recent progress in dye sensitized solar cell materials and photo-supercapacitors: a review. J. Power. Sources 493, 229698 (2021)

    Google Scholar 

  5. J. Galos, K. Pattarakunnan, A.S. Best, I.L. Kyratzis, C.H. Wang, A.P. Mouritz, Energy storage structural composites with integrated lithium-ion batteries: a review. Adv. Mater. Technol. 6(8), 2001059 (2021)

    Google Scholar 

  6. W. Luo, S. Cheng, M. Wu, X. Zhang, D. Yang, X. Rui, A review of advanced separators for rechargeable batteries. J. Power. Sources 509, 230372 (2021)

    Google Scholar 

  7. J. Jang, J. Oh, H. Jeong, W. Kang, C. Jo, A review of functional separators for lithium metal battery applications. Materials 13(20), 4625 (2020)

    ADS  Google Scholar 

  8. A. Agrawal, S.A. Siddiqui, A. Soni, G.D. Sharma, Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Sol. Energy 233, 378–407 (2022)

    ADS  Google Scholar 

  9. M. Stojanović, N. Flores-Diaz, Y. Ren, N. Vlachopoulos, L. Pfeifer, Z. Shen, A. Hagfeldt, The rise of dye-sensitized solar cells: from molecular photovoltaics to emerging solid-state photovoltaic technologies. Helv. Chim. Acta 104(4), e2000230 (2021)

    Google Scholar 

  10. C.C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power. Sources 317, 120–132 (2016)

    ADS  Google Scholar 

  11. T.S. Kumaran, A. Prakasam, P. Vennila, S.P. Banu, G. Venkatesh, New carbazole-based organic dyes with various acceptors for dye-sensitized solar cells: synthesis, characterization, DSSCs fabrications and DFT study. Asian J. Chem. 7, 1541–1550 (2021)

    Google Scholar 

  12. E. Figgemeier, A. Hagfeldt, Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses. Int. J. Photoenergy 6(3), 127–140 (2004)

    Google Scholar 

  13. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020)

    Google Scholar 

  14. A. Venkateswararao, J.K. Ho, S.K. So, S.W. Liu, K.T. Wong, Device characteristics and material developments of indoor photovoltaic devices. Mater. Sci. Eng. R. Rep. 139, 100517 (2020)

    Google Scholar 

  15. G. Boschloo, Improving the performance of dye-sensitized solar cells. Front. Chem. 7, 77 (2019)

    ADS  Google Scholar 

  16. A.W.M.V. Ekanayake, G.R.A. Kumara, R.M.G. Rajapaksa, A. Pallegedara, Increasing the efficiency of a dye-sensitized solid-state solar cell by iodine elimination process in hole conductor material. In International Conference on Sustainable Built Environment (Springer, Singapore, 2018) pp. 282–287

  17. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)

    Google Scholar 

  18. T.H. Syed, W. Wei, Technoeconomic analysis of dye sensitized solar cells (DSSCs) with WS2/carbon composite as counter electrode material. Inorganics 10, 191 (2022)

    Google Scholar 

  19. Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, et al., 11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials. Nature Commun. 8(1), 1–8 (2017)

  20. M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, S.A. Soomro, F. Elsehrawy, F., et al., Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 9(17), 10527–10545 (2021)

  21. Djhé. File: Operating Diagram of DSC.svg. Available online: https://upload.wikimedia.org/wikipedia/commons/a/a7/Operating_diagram_of_DSC.svg. Accessed 14 Jan 2023

  22. I.P. Liu, Y.Y. Chen, Y.S. Cho, L.W. Wang, C.Y. Chien, Y.L. Lee, Double-layered printable electrolytes for highly efficient dye-sensitized solar cells. J. Power. Sources 482, 228962 (2021)

    Google Scholar 

  23. L. Li, X. Zhang, B. Liang, Y. Zhang, W. Zhang, One-step hydrothermal synthesis of NiCo2S4 loaded on electrospun carbon nanofibers as an efficient counter electrode for dye-sensitized solar cells. Sol. Energy 202, 358–364 (2020)

    ADS  Google Scholar 

  24. M. Ramya, T.K. Nideep, V.P.N. Nampoori, M. Kailasnath, The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. J. Mater. Sci. Mater. Electron. 32(3), 3167–3179 (2021)

    Google Scholar 

  25. R. Kumar, P. Bhargava, Counter electrodes in DSSCs based on carbon derived from edible sources. Counter Electrodes for Dye-sensitized and Perovskite Solar Cells 1, 71–92 (2018)

    Google Scholar 

  26. J.A. Castillo-Robles, E. Rocha-Rangel, J.A. Ramírez-de-León, F.C. Caballero-Rico, E.N. Armendáriz-Mireles, Advances on dye-sensitized solar cells (DSSCs) nanostructures and natural colorants: a review. J. Compos. Sci. 5, 288 (2021)

    Google Scholar 

  27. K. Sharma, V. Sharma, S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13(1), 1–46 (2018)

    MathSciNet  Google Scholar 

  28. S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, C. Kim, A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 46, 4887–4889 (2007)

    Google Scholar 

  29. J. Moon, W. Shin, J.T. Park, H. Jang, Solid-state solar energy conversion from WO3 nano and microstructures with charge transportation and light-scattering characteristics. Nanomaterials 9, 1797 (2019)

    Google Scholar 

  30. M. Zalas, K. Jelak, Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application. Optik 206, 164314 (2020)

    ADS  Google Scholar 

  31. S. Bera, D. Sengupta, S. Roy, K. Mukherjee, Research into dye-sensitized solar cells: a review highlighting progress in India. J. Phys. Energy 3(3), 032013 (2021)

    ADS  Google Scholar 

  32. S. Shalini, S. Prasanna, T.K. Mallick, S. Senthilarasu, Review on natural dye sensitized solar cells: operation, materials and methods. Renew. Sustain. Energy Rev. 51, 1306–1325 (2015)

    Google Scholar 

  33. C. Cavallo, F.D. Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 14, (2017)

  34. P. Semalti, S.N. Sharma, Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: a review. J. Nanosci. Nanotechnol. 20(6), 3647–3658 (2020)

    Google Scholar 

  35. A. Kubiak, Z. Bielan, A. Bartkowiak, E. Gabała, A. Piasecki, M. Zalas, et al., Synthesis of titanium dioxide via surfactant-assisted microwave method for photocatalytic and dye-sensitized solar cells applications. Catalysts 10(5), 586 (2021)

  36. V.A. González-Verjan, B. Trujillo-Navarrete, R.M. Félix-Navarro, J.N. de León, J.M. Romo-Herrera, J.C. Calva-Yáñez, E.A. Reynoso-Soto, Effect of TiO2 particle and pore size on DSSC efficiency. Mater. Renew. Sustain. 9(2), 1–8 (2020)

  37. K.K. Lau, M. Soroush, Overview of dye-sensitized solar cells. In Dye-sensitized solar cells (Academic Press 2019) pp. 1–49

  38. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(7L), L638 (2006)

  39. S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006)

    Google Scholar 

  40. W. Sang-aroon, S. Tontapha, V. Amornkitbamrung, Photovoltaic performance of natural dyes for dye-sensitized solar cells: a combined experimental and theoretical study. In Dye-Sensitized Solar Cells (Academic Press, 2019) pp. 203–229

  41. S. Sigdel, H. Elbohy, J. Gong, N. Adhikari, K. Sumathy, H. Qiao, Q. Qiao, Dye-sensitized solar cells based on porous hollow tin oxide nanofibers. IEEE Trans. Electron Devices 62(6), 2027–2032 (2015)

    ADS  Google Scholar 

  42. S. Tontapha, W. Sang-aroon, T. Promgool, S. Kanokmedhakul, W. Maiaugree, E. Swatsitang, V. Amornkitbumrung, Electrocatalytic activity of disulfide/thiolate with graphene nanosheets as an efficient counter electrode for DSSCs: a DFT study. Mater. Today Commun. 22, 100742 (2020)

    Google Scholar 

  43. Y.J. Xia, Z.S. Guan, T. He, Rational doping for zinc oxide and its influences on morphology and optical properties. Chin. Phys. B 23(8), 087701 (2014)

    ADS  Google Scholar 

  44. N. Huang, Y. Liu, T. Peng, X. Sun, B. Sebo, Q. Tai, et al., Synergistic effects of ZnO compact layer and TiCl4 post-treatment for dye-sensitized solar cells. J. Power Sources 204, 257–264 (2012)

  45. H. Elbohy, Urea pre-treatment of N 2-annealed transition metal oxides for low cost and efficient counter electrodes in dyesensitized solar cell (South Dakota State University, 2016)

  46. C.B. Cooper, E.J. Beard, Á. Vázquez Mayagoitia, L. Stan, G.B. Stenning, D.W. Nye, J.M. Cole, Design-to-device approach affords panchromatic co-sensitized solar cells. Adv. Energy Mater. 9(5), 1802820 (2019)

    Google Scholar 

  47. M.J. García-Salinas, M.J. Ariza, Optimizing a simple natural dye production method for dye-sensitized solar cells: examples for betalain (bougainvillea and beetroot extracts) and anthocyanin dyes. Appl. Sci. 9, 2515 (2019)

    Google Scholar 

  48. C. Pathak, K. Surana, V.K. Shukla, P.K. Singh, Fabrication and characterization of dye sensitized solar cell using natural dyes. Mater. Today Proc. 12, 665–670 (2019)

    Google Scholar 

  49. P. Naik, I.M. Abdellah, M. Abdel-Shakour, R. Su, K.S. Keremane, A. El-Shafei, A.V. Adhikari, Improvement in performance of N3 sensitized DSSCs with structurally simple aniline based organic co-sensitizers. Sol. Energy 174, 999–1007 (2018)

    ADS  Google Scholar 

  50. K. Subramaniam, A.B. Athanas, S. Kalaiyar, Dual anchored Ruthenium (II) sensitizer containing 4-Nitro-phenylenediamine Schiff base ligand for dye sensitized solar cell application. Inorg. Chem. Commun. 104, 88–92 (2019)

    Google Scholar 

  51. P. Mahadevi, S. Sumathi, Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth. Commun. 50(15), 2237–2249 (2020)

    Google Scholar 

  52. Susana Garcia Mayo, Dye-sensitized solar cells (DSSCs): the future of consumer electronics (University of Gavle, Thesis, 2021)

    Google Scholar 

  53. S. Mandal, K. Ramanujam, DFT/TD-DFT studies of metal free N annulated perylene based organic sensitizers for dye-sensitized solar cells: is thiophene spacer essential for improving the DSSC performance. ChemistrySelect 1(18), 5854–5862 (2016)

    Google Scholar 

  54. D.D. Babu, H. Cheema, D. Elsherbiny, A. El-Shafei, A.V. Adhikari, Molecular engineering and theoretical investigation of novel metal-free organic chromophores for dye-sensitized solar cells. Electrochim. Acta 176, 868–879 (2015)

    Google Scholar 

  55. P. Naik, D.D. Babu, R. Su, A. El-Shafei, A.V. Adhikari, Synthesis, characterization and performance studies of a new metal-free organic sensitizer for DSSC application. Mater. Today Proc. 5(1), 3150–3157 (2018)

    Google Scholar 

  56. N. Duvva, S. Prasanthkumar, L. Giribabu, Influence of strong electron donating nature of phenothiazine on A3B-type porphyrin based dye sensitized solar cells. Sol. Energy 184, 620 (2019)

    ADS  Google Scholar 

  57. M. Chandrasekharan, K.S.V. Gupta, S.P. Singh, A. Islam, L. Han, Simple fluorene based triarylamine metal-free organic sensitizers. Electrochim. Acta 174, 581–587 (2015)

    Google Scholar 

  58. G. Richhariya, A. Kumar, P. Tekasakul, B. Gupta, Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705–718 (2017)

    Google Scholar 

  59. A. Fakharuddin, R. Jose, T.M. Brown, F. Fabregat-Santiago, J. Bisquert, A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 7(12), 3952–3981 (2014)

    Google Scholar 

  60. J.B. Baxter, Commercialization of dye sensitized solar cells: present status and future research needs to improve efficiency, stability, and manufacturing. J. Vac. Sci. Technol. A Vac. Surf. Films 30(2), 020801 (2012)

    ADS  Google Scholar 

  61. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)

    ADS  Google Scholar 

  62. N. Asim, S. Ahmadi, M.A. Alghoul, F.Y. Hammadi, K. Saeedfar, K. Sopian, Research and development aspects on chemical preparation techniques of photoanodes for dye sensitized solar cells. Int. J. Photoenergy 1–21 (2014)

  63. J.H. Qi, Y. Li, T.T. Duong, H.J. Choi, S.G. Yoon, Dye-sensitized solar cell based on AZO/Ag/AZO multilayer transparent conductive oxide film. J. Alloy. Compd. 556, 121–126 (2013)

    Google Scholar 

  64. C.B. Cooper, E.J. Beard, Á. Vázquez-Mayagoitia, L. Stan, G.B. Stenning, D.W. Nye, J.M. Cole, Design-to-device approach affords panchromatic co-sensitized solar cells. Adv. Energy Mater. 9(5), 1802820 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Marimuthu.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekaran, P.D., Marimuthu, R. An Extensive Analysis of Dye-Sensitized Solar Cell (DSSC). Braz J Phys 54, 28 (2024). https://doi.org/10.1007/s13538-023-01375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01375-w

Keywords

Navigation