Skip to main content
Log in

How Does the Soil Chemical Composition Affect the Mass Attenuation Coefficient? A Study Using Computer Simulation to Understand the Radiation-Soil Interaction Processes

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the last few decades, a lot of research has focused on the radiation interaction with complex materials such as soil. The mass attenuation coefficient (\(\mu\)) is important to analyze the different physical properties of porous media. For this reason, it is important to understand how \(\mu\) varies as a function of the chemical composition of porous materials. This study analyzes the influence of the chemical composition on \(\mu\), from \(1\) to \(1500 \mathrm{keV}\), using the XCOM computer simulation code. Five types of soil, containing variable proportions of \({\mathrm{SiO}}_{2}\), \({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\), \({\mathrm{Fe}}_{2}{\mathrm{O}}_{3}\), and \({\mathrm{TiO}}_{2}\), were evaluated. The results showed that the influence of each of the partial effects (photoelectric, coherent, and incoherent scattering), in \(\mu\) values, occurred from their dependence on the atomic number (\(Z\)), with greater \(Z\) influence in low energies. A detailed analysis of the influence of the chemical composition considering the oxides individually is also presented. In addition, this paper brings a comprehensive description of the methodology employed for the measurements of the radiation interaction main effects and it can also be used to teach physics applied courses in areas such as modern physics, dosimetry, and radiation protection, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. M.E. Medhat, L.F. Pires, R.C.J. Arthur, J. Radioanal. Nucl. Chem. (2014). https://doi.org/10.1007/s10967-014-3028-y

    Article  Google Scholar 

  2. A. Un, Y. Sahin, Nucl. Instrum. Methods Phys. Res. B (2012). https://doi.org/10.1016/j.nimb.2012.07.031

    Article  Google Scholar 

  3. D. Reilly, N. Ensslih, H. Smith Jr, S. Kreiner, Passive nondestructive assay of nuclear materials, 1a ed. (US Nuclear Regulatory Commission, Washington, 1991), pp. 27–42

  4. S.R. Manohara, S.M. Hanagodimath, Nucl. Instrum. Methods Phys. Res. B (2007). https://doi.org/10.1016/j.nimb.2008.06.034

    Article  Google Scholar 

  5. G.S. Bhandal, K. Singh, Appl. Radiat. Isot. (1993). https://doi.org/10.1016/0969-8043(93)90048-F

    Article  Google Scholar 

  6. I. Han, L. Demir, M. Şahin, Radiat. Phys. Chem. (2009). https://doi.org/10.1016/j.radphyschem.2009.03.077

    Article  Google Scholar 

  7. L.F. Pires, F.A.M. Cássaro, L. Tech, L.A.A. Pereira, J.A.T. Oliveira, Rev. Bras. Ens. Fis. (2020). https://doi.org/10.1590/1806-9126-rbef-2019-0340

    Article  Google Scholar 

  8. J.C. Costa, J.A.R. Borges, L.F. Pires, R.C.J. Arthur, O.O.S. Bacchi, Ann. Nucl. Energy (2014). https://doi.org/10.1016/j.anucene.2013.10.006

    Article  Google Scholar 

  9. T.R. Ferreira, L.F. Pires, A.M. Brinatti, A.C. Auler, J. Soils Sediments (2018). https://doi.org/10.1007/s11368-017-1866-2

    Article  Google Scholar 

  10. L.F. Pires, Soil Tillage Res. (2018). https://doi.org/10.1016/j.still.2018.07.015

    Article  Google Scholar 

  11. L.F. Pires, L.V. Prandel, S.C. Saab, Geoderma (2014). https://doi.org/10.1016/j.geoderma.2013.09.003

    Article  Google Scholar 

  12. J.A.T. Oliveira, F.A.M. Cássaro, L.F. Pires, Rev. Bras. Ens. Fis. (2020). https://doi.org/10.1590/1806-9126-rbef-20200192

    Article  Google Scholar 

  13. I. Akkurt, B. Mavi, A. Akkurt, C. Basyigit, S. Kilincarslan, H.A. Yalim, J. Quant. Spectrosc. Radiat. Transf. (2005). https://doi.org/10.1016/j.jqsrt.2004.09.024

    Article  Google Scholar 

  14. G.S. Mudahar, M. Sanjay, M. Singh, Appl. Radiat. Isot. (1991). https://doi.org/10.1016/0883-2889(91)90118-K

    Article  Google Scholar 

  15. R. Cesareo, J.T. Assis, S. Crestana, Appl. Radiat. Isot. (1994). https://doi.org/10.1016/0969-8043(94)90205-4

    Article  Google Scholar 

  16. M.N. Alam, M.M.H. Miah, M.I. Chowdhury, M. Kamal, S. Ghose, R. Rahman, Appl. Radiat. Isot. (2001). https://doi.org/10.1016/S0969-8043(00)00354-7

    Article  Google Scholar 

  17. I. Han, L. Demir, J. X-ray Sci. Technol. (2010). https://doi.org/10.3233/xst-2010-0238

    Article  Google Scholar 

  18. V. Trunova, A. Sidorina, V. Kriventsov, Appl. Radiat. Isot. (2015). https://doi.org/10.1016/j.apradiso.2014.09.017

    Article  Google Scholar 

  19. M.E. Medhat, L.F. Pires, X-ray Spectrom. (2016). https://doi.org/10.1002/xrs.2689

    Article  Google Scholar 

  20. A.H. Taqi, H.J. Khalil, J. Radiat. Res. Appl. Sci. (2017). https://doi.org/10.1016/j.jrras.2017.05.008

    Article  Google Scholar 

  21. N. Kucuk, Z. Tumsavas, M. Cakir, J. Radiat. Res. (2013). https://doi.org/10.1093/jrr/rrs109

    Article  Google Scholar 

  22. L.V. Prandel, S.C. Saab, L.M.S. Tonial, A.M. Brinatti, L.F. Pires, Braz. Arch. Biol. Technol. (2021). https://doi.org/10.1590/1678-4324-2021190760

    Article  Google Scholar 

  23. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database. (NIST Physical Measurement Laboratory, 2010). http://physics.nist.gov/xcom. Accessed 12 December 2020

  24. P.S. Kore, P.P. Pawar, Radiat. Phys. Chem. (2014). https://doi.org/10.1016/j.radphyschem.2013.12.038

    Article  Google Scholar 

  25. I. Kaplan, Nuclear Physics, 1ª ed. (Addison-Wesley Publishing Company, Cambridge, 1963)

  26. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, 1ª ed. (Wiley – VCH, Weinheim, 2004)

  27. C.R. Appoloni, E.A. Rios, Appl. Radiat. Isot. (1994). https://doi.org/10.1016/0969-8043(94)90041-8

    Article  Google Scholar 

  28. J.C.M. Oliveira, C.R. Appoloni, M.M. Coimbra, K. Reichardt, O.O.S. Bacchi, E. Ferraz, S.C. Silva, W. Galvão Filho, Soil Tillage Res. (1998) https://doi.org/10.1016/S0167-1987(98)00130-5

  29. C.M.P. Vaz, J.M. Naime, Á. Macedo, Soil Sci. 164, 403–410 (1999)

    Article  ADS  Google Scholar 

  30. C. Singh, T. Singh, A. Kumar, G.S. Mudahar, Ann. Nucl. Energy (2004). https://doi.org/10.1016/j.anucene.2004.02.002

    Article  Google Scholar 

Download references

Acknowledgements

LFP received financial support from the Brazilian National Council for Scientific and Technological Development (CNPq) through Grant 304925/2019-5 (Productivity in Research). KSK received master grant from the Coordination for the Improvement of Higher Education Personnel (Capes).

Author information

Authors and Affiliations

Authors

Contributions

M.A. Camargo: Formal analysis, Data Curation, Methodology, Writing—Original Draft. K.S. Kodum: Formal analysis, Data Curation, Methodology, Writing—Original Draft. L.F. Pires: Conceptualization, Data Curation, Writing—Original Draft.

Corresponding author

Correspondence to Mario A. Camargo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, M.A., Kodum, K.S. & Pires, L.F. How Does the Soil Chemical Composition Affect the Mass Attenuation Coefficient? A Study Using Computer Simulation to Understand the Radiation-Soil Interaction Processes. Braz J Phys 51, 1775–1783 (2021). https://doi.org/10.1007/s13538-021-00971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00971-y

Keywords

Navigation