Skip to main content
Log in

Evaluation of Static and Dynamic Yield Stress for Isotropic and Anisotropic Particle–Based MR Fluids: Modeling and Analysis

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural deformation in the low shear rate region that is an undeformed state is investigated for the isotropic and anisotropic magnetic particle–based magnetorheological (MR) fluid. Flow curves were obtained for both MR fluids between 0.1 s−1 and 500 s−1 in the absence and in the presence of magnetic fields. A model to describe the flow behavior over the full shear rate study is proposed. The proposed model accounts for the friction contribution coming from particle-particle as well as particle-carrier interactions of anisotropic particles particularly in flake-shaped particles. The parameters derived from the fit have physical meaning, and it correlates with the observed dependency in rheology study. To get a better understanding of particle-particle friction contribution, magnetic nanoparticles were added in the MR fluid and flow behavior is studied. The study clearly demonstrates the contribution of particle-particle friction on the MR properties. The contribution of particle-carrier friction, due to the shape of the particle, is verified by comparing the result with spherical-shaped particle–based MR fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Khanicheh, D. Mintzopoulos, B. Weinberg, A. Tzika, C. Mavroidis, Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment. IEEE-ASME Trans Mechatron. 13(3), 286–294 (2008)

    Article  Google Scholar 

  2. S.B. Choi, D.Y. Lee, Rotational motion control of a washing machine using electrorheological clutches and brakes. Proc. Inst. Mech. Eng. Part C 219, 627–637 (2005)

    Article  Google Scholar 

  3. J. Nikitczuk, B. Weinberg, C. Mavroidis, Control of electrorheological fluid based resisitive torque elements for use in active rehabilitation devices. Smart Mater. Struct. 16, 418–428 (2007)

    Article  ADS  Google Scholar 

  4. X. Niu, L. Liu, W. Wen, P. Sheng, Microfluidic manipulation in lab-chips using electrorheological fluid. J. Intell. Mater. Syst. Struct. 18, 1187–1190 (2007)

    Article  Google Scholar 

  5. Magnetorhology Advances and Applications, Ed. Norman Werely, RSC Pub (2014)

  6. S.T. Lim, M.S. Cho, I.B. Jang, H.J. Choi, Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. J. Magn. Magn. Mater. 282, 170–173 (2004)

    Article  ADS  Google Scholar 

  7. J. Goldasz, B. Sapinski, Nondimensional characterization of flow-mode magnetorheological/electrorheological fluid dampers. J. Intell. Mater. Syst. Struct. 23(14), 1545–1562 (2012)

    Article  Google Scholar 

  8. W.P. Wu, B.Y. Zhao, Q. Wu, L.S. Chen, K.A. Hu, The strengthening effect of guar gum on the yield stress of magnetorheological fluid. Smart Mater. Struct. 15(4), N94 (2006)

    Article  Google Scholar 

  9. S.H. Ha, M.S. Seong, S.B. Choi, Design and vibration control of military vehicle suspension system using magnetorheological damper and disc spring. Smart Mater. Struct. 22(6), 65006 (2013)

    Article  Google Scholar 

  10. M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and applications of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct. 10(1), 5–13 (1999)

    Article  Google Scholar 

  11. B.J. Park, F.F. Fang, H.J. Choi, Magnetorheology: materials and application. Soft Matter 6(21), 5246–5253 (2010)

    Article  ADS  Google Scholar 

  12. P.P. Phule, Magnetorheological (MR) fluids: principles and applications. Smart Mater. Bull. 2, 7–10 (2001)

    Article  Google Scholar 

  13. J. Wang, G. Meng, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 215(3), 165–174 (2001)

    Google Scholar 

  14. W.H. Li, H. Du, N.Q. Guo, P.B. Kosasih, Magnetorheological fluids based haptic device. Sens. Rev. 24(1), 68–73 (2004)

    Article  Google Scholar 

  15. B. Liu, W.H. Li, P.B. Kosasih, X.Z. Zhang, Development of an MR-brake-based haptic device. Smart Mater. Struct. 15(6), 1960–1966 (2006)

    Article  ADS  Google Scholar 

  16. P. Chen, X.X. Bai, L.J. Qian, S.B. Choi, A magneto-rheological fluid mount featuring squeeze mode: analysis and testing. Smart Mater. Struct. 25(5), 55002 (2016)

    Article  Google Scholar 

  17. S.B. Choi, Y.M. Han, Magnetorheological Fluid Technology: Applications in Vehicle Systems (CRC press, New york, 2012)

    Book  Google Scholar 

  18. J. Park, G.H. Yoon, J.W. Kang, S.B. Choi, Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. Smart Mater. Struct. 25(8), 85009 (2016)

    Article  Google Scholar 

  19. W. Kordonski, A. Shorey, Magnetorheological (MR) jet finishing technology. J. Intell. Mater. Syst. Struct. 18(12), 1127–1130 (2007)

    Article  Google Scholar 

  20. S. Jha, in Alpha Science International Ltd., ed. by V. K. Jain. Introduction to Micromachining (Oxford, 2010), pp. 5.1–5.21

  21. A. Sidpara, V.K. Jain, Experimental investigations into forces during magnetorheological fluid based finishing process. Int. J. Mach. Tools Manuf. 51(4), 358–362 (2011)

    Article  Google Scholar 

  22. A. Ghaffari, S. Hashemabadi, M. Ashtiani, A review on the simulation and modeling of magnetorheological fluids. J. Intell. Mater. Syst. Struct. 26, 881–904 (2015)

    Article  Google Scholar 

  23. Bingham E. C., Fluidity and Plasticity (McGraw Hill New York) (1922)

  24. W. Herschel, R. Bulkley, Consistency measurements of gum benzene solutions. Kolloid Z 39, 291–300 (1926)

    Article  Google Scholar 

  25. T.C. Papanastasiou, Flows of materials with yield. J. Rheol. 31, 385–404 (1987)

    Article  ADS  Google Scholar 

  26. Y.P. Seo, Y. Seo, Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 28, 3077–3084 (2012)

    Article  Google Scholar 

  27. Y.P. Seo, S. Han, J. Choi, A. Takahara, H.J. Choi, Y. Seo, Adv. Mater., 1704769 (2018)

  28. R.V. Upadhyay, Z. Laherisheth, S. Kruti, Rheological properties of soft magnetic flake shaped iron particle based magnetorheological fluid in dynamic mode. Smart Mater. Struct. 23, 015002 (2014)

    Article  ADS  Google Scholar 

  29. Z. Laherisheth, K. Parekh, R.V. Upadhyay, Role of inter-particle force between micro and nano magnetic particles on the stability of magnetorheological fluid. AIP Adv. 7, 025206 (2017)

    Article  ADS  Google Scholar 

  30. J.M. Ginder, L.C. Davis, L.D. Elie, Rheology of magnetorheological fluids: models and measurements. Int. J. Mod. Phys. B 10, 3293–3303 (1996)

    Article  ADS  Google Scholar 

  31. F.F. Fang, H.J. Choi, M.S. John, Magneto rheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloid Surf. A 351, 46–51 (2009)

    Article  Google Scholar 

  32. G.R. Iglesias, M.T. Lopez-Lopez, J.D. Duran, F. Gonzalez-Caballero, A.V. Delgado, Dynamic characterization of extremely bidisperse magnetorheological fluids. J. Colloid Interface Sci. 377, 153 (2012)

  33. M.T. Lopez-Lopez, P. Kuzhir, S. Lacis, F. Gonzalez-Caballero, J.D. Duran, G. Bossis, Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J.Phys: Condesed Matter 18, S2803 (2006)

    Google Scholar 

  34. R. Rosensweig, Magnetorheological particle clouds. E. J. Magn. Magn. Mater. 479, 301–306 (2019)

    Article  ADS  Google Scholar 

  35. J.A. Ruiz-Lopez, R. Hidalgo-Alvarez, J. de Vicente, Towards a universal master curve in magnetorheology. Smart Mater. Struct. 26, 054001 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

The authors are thankful to Charotar University of Science and Technology for financial help to MP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnari Parekh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisuwala, M., Upadhyay, R.V. & Parekh, K. Evaluation of Static and Dynamic Yield Stress for Isotropic and Anisotropic Particle–Based MR Fluids: Modeling and Analysis. Braz J Phys 50, 399–409 (2020). https://doi.org/10.1007/s13538-020-00755-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00755-w

Keywords

Navigation