Skip to main content
Log in

Finite Temperatures by Means of Zero Kelvin Kohn-Sham Formalism of Density-Functional Theory

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

During the last decades, density-functional theory (DFT) has been specially employed in cases with temperature T= 0 K. Even though the interest is growing rapidly, in situations with T> 0 K, the implementation of the so-called thermal DFT (thDFT) remains not so widely explored. In this context, we here present an alternative procedure of including thermal effects in a Kohn-Sham DFT calculation: using the T= 0 K formalism, we propose the construction of an effective potential which incorporates, beyond electronic interaction, temperature effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  2. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  3. K. Capelle, Braz. J. Phys. 36, 1318 (2006)

    Article  ADS  Google Scholar 

  4. A. Mattsson, Science. 298, 759 (2002)

    Article  Google Scholar 

  5. R.G. Parr, W. Yang. Density-functional theory of atoms and molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  6. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  7. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  ADS  Google Scholar 

  8. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and challenges in warm dense matter (Springer, Switzerland, 2014)

  9. H. Eschrig, Phys. Rev. B. 82, 205120 (2010)

    Article  ADS  Google Scholar 

  10. A. Pribram-Jones, K. Burke, Phys. Rev. B. 93, 205140 (2016)

    Article  ADS  Google Scholar 

  11. A. Pribram-Jones, D.A. Gross, K. Burke, Annual Rev. Phys. Chem. 66, 283 (2015)

    Article  ADS  Google Scholar 

  12. N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, D. Blaschke, Astrophys. J. 683, 1217 (2008)

    Article  ADS  Google Scholar 

  13. W. Lorenzen, B. Holst, R. Redmer, Phys. Rev. Lett. 102, 115701 (2009)

    Article  ADS  Google Scholar 

  14. A. Kietzmann, R. Redmer, M.P. Desjarlais, T.R. Mattsson, Phys. Rev. Lett. 101, 070401 (2008)

    Article  ADS  Google Scholar 

  15. A. Pribram-Jones, S. Pittalis, E.K.U. Gross, K. Burke, in Frontiers and challenges in warm dense matter, ed. by F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (Springer, Switzerland, 2014), pp. 25–60

  16. A. Pribram-Jones, P.E. Grabowski, K. Burke, Phys. Rev. Lett. 116, 233001 (2016)

    Article  ADS  Google Scholar 

  17. J.C. Smith, F. Sagredo, K. Burke, in Frontiers of quantum chemistry, ed. by M.J. Wójcik, H. Nakatsuji, B. Kirtman, Y. Ozaki (Springer, Singapore, 2017), pp. 249–272

  18. J.C. Smith, A. Pribram-Jones, K. Burke, Phys. Rev. B. 93, 245131 (2016)

    Article  ADS  Google Scholar 

  19. A very instructive discussion about the difference between short-ranged and long-ranged electronic interactions has been carried out in the literature [20]

  20. J.J. Wang, W. Li, S. Chen, G. Xianlong, M. Rontani, M. Polini, Phys. Rev. B. 86, 075110 (2012)

    Article  ADS  Google Scholar 

  21. A. Benítez, C.R. Proetto, Phys. Rev. A. 94, 052506 (2016)

    Article  ADS  Google Scholar 

  22. Note that the spatially antisymmetric wavefunction of Eq. (13) makes electrons to be as far apart as possible, as required by the strongly interacting limit

  23. V.I. Yukalov, M. D. Girardeau, Laser Phys. Lett. 2, 375 (2005)

    Article  ADS  Google Scholar 

  24. N. Helbig, I.V. Tokatly, A. Rubio, J. Chem. Phys. 131, 224105 (2009)

    Article  ADS  Google Scholar 

  25. D. Vieira, Phys. Rev. B. 86, 075132 (2012)

    Article  ADS  Google Scholar 

  26. J.C. Smith, K. Burke, Phys. Rev. B. 98, 075148 (2018)

    Article  ADS  Google Scholar 

  27. H. Englisch, R. Englisch, Physica A. 121, 253 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. J.P. Perdew, R. G. Parr, M. Levy, J.L. Balduz Jr, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  29. M. Mundt, S. Kümmel, Phys. Rev. Lett. 95, 203004 (2005)

    Article  ADS  Google Scholar 

  30. D. Vieira, K. Capelle, C.A. Ullrich, Phys. Chem. Chem. Phys. 11, 4647 (2009)

    Article  Google Scholar 

  31. K. Capelle, G. Vignale, C.A. Ullrich, Phys. Rev. B. 81, 125114 (2010)

    Article  ADS  Google Scholar 

  32. D. Vieira, J. Chem. Theory Comput. 10, 3641 (2014)

    Article  Google Scholar 

  33. J. Janak, Phys. Rev. B. 18, 7165 (1978)

    Article  ADS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The authors also thank the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vieira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Querne, M.B.P., Vieira, D. Finite Temperatures by Means of Zero Kelvin Kohn-Sham Formalism of Density-Functional Theory. Braz J Phys 49, 615–622 (2019). https://doi.org/10.1007/s13538-019-00691-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00691-4

Keywords

Navigation