Skip to main content
Log in

Weak Disorder Enhancing the Production of Entanglement in Quantum Walks

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We find out a few ways to improve the realization of entanglement between the internal (spin) and external (position) degrees of freedom of a quantum particle, through the insertion of disordered time steps in a one-dimensional discrete time quantum walk in different scenarios. The disorder is introduced by a randomly chosen quantum coin obtained from a uniform distribution among infinite quantum coins or only between Hadamard and Fourier coins for all the time steps (strong disorder). We can also decrease the amount of disorder by alternating disordered and ordered time steps throughout a quantum walk or by establishing a probability p < 0.5 to pick a Fourier coin instead of a Hadamard one for each time step (weak disorder). Our results show that both scenarios lead to maximal entanglement outperforming the ordered quantum walks. However, these last scenarios are more efficient to create entanglement, because they achieve high entanglement rates in fewer time steps than the former ones. In order to compare distinct disordered cases, we perform an average entanglement by averaging over a large set of initial qubits over time starting from one site (local state) or spread over many neighbor positions following a Gaussian distribution. Some transient behaviors from order to disorder in quantum walks are also evaluated and discussed. Experimental remarks based on available experimental platforms from the literature are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The discrete Gaussian states are defined within j = − 100 and 100 centered at j = 0, the condition of normalization gives an error below 10− 5% when σ0 = 10.

References

  1. Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks. Phys. Rev. A. 48, 1687 (1993)

    Article  ADS  Google Scholar 

  2. J. Kempe, Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  3. S.E. Venegas-Andraca, Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Shenvi, J. Kempe, K.B. Whaley, Quantum random-walk search algorithm. Phys. Rev. A. 67, 052307 (2003)

    Article  ADS  Google Scholar 

  5. J.R. Busemeyer, Z. Wang, J.T. Townsend, Quantum dynamics of human decision-making. J. Math. Psychol. 50, 220–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančcal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 446, 782–786 (2007)

    Article  ADS  Google Scholar 

  7. A.M. Childs, Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. N.B. Lovett, S. Cooper, M. Everitt, M. Trevers, V. Kendon, Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A. 81, 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Chandrashekar, Two-component dirac-like hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices. Sci. Rep. 3, 2829 (2013)

    Article  ADS  Google Scholar 

  10. Y. Wang, Y. Shang, P. Xue, Generalized teleportation by quantum walks. Quantum Inf. Process. 16, 221 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. Robens, W. Alt, D. Meschede, C. Emary, A. Alberti, Ideal negative measurements in quantum walks disprove theories based on classical trajectories. Phys. Rev. X. 5, 011003 (2015)

    Google Scholar 

  12. J. Wang, K. Manouchehri. Physical implementation of quantum walks (Springer, Berlin, 2013)

    MATH  Google Scholar 

  13. G. Abal, R. Siri, A. Romanelli, R. Donangelo, Quantum walk on the line: Entanglement and nonlocal initial conditions. Phys. Rev. A. 73, 042302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Abal, R. Siri, A. Romanelli, R. Donangelo, Erratum: Quantum walk on the line: Entanglement and non-local initial conditions [phys. rev. a 73, 042302 (2006)]. Phys. Rev. A. 73, 069905(E) (2006)

    Article  ADS  Google Scholar 

  15. S. Salimi, R. Yosefjani, Asymptotic entanglement in 1d quantum walks with a time-dependent coined. Int. J. Modern Phys. B. 26, 1250112 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Eryiġit, S. Gündüċ, Time exponents of asymptotic entanglement of discrete quantum walk in one dimension. Int. J. Quantum Inf. 12, 1450036 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.C. Orthey, E.P.M. Amorim, Asymptotic entanglement in quantum walks from delocalized initial states. Quantum Inf. Process. 16, 224 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G.J. de Valcárcel, E. Roldán, A. Romanelli, Tailoring discrete quantum walk dynamics via extended initial conditions. J. Phys. 12, 123022 (2010)

    Google Scholar 

  19. A. Romanelli, Distribution of chirality in the quantum walk: Markov process and entanglement. Phys. Rev. A. 81, 062349 (2010)

    Article  ADS  Google Scholar 

  20. A. Romanelli, Thermodynamic behavior of the quantum walk. Phys. Rev. A. 85, 012319 (2012)

    Article  ADS  Google Scholar 

  21. A. Romanelli, G. Segundo, The entanglement temperature of the generalized quantum walk. Physica A. 393, 646–654 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. W.W. Zhang, S.K. Goyal, F. Gao, B.C. Sanders, C. Simon, Creating cat states in one-dimensional quantum walks using delocalized initial states. J. Phys. 18, 093025 (2016)

    Google Scholar 

  23. A.C. Orthey, E.P.M. Amorim, Connecting velocity and entanglement in quantum walks. Phys. Rev. A. 99, 032320 (2019)

    Article  ADS  Google Scholar 

  24. H.S. Ghizoni, E.P.M. Amorim, Trojan quantum walks. Braz. J. Phys. 49, 168 (2019)

    Article  ADS  Google Scholar 

  25. R. Vieira, E.P.M. Amorim, G. Rigolin, Dynamically disordered quantum walk as a maximal entanglement generator. Phys. Rev. Lett. 111, 180503 (2013)

    Article  ADS  Google Scholar 

  26. R. Vieira, E.P.M. Amorim, G. Rigolin, Entangling power of disordered quantum walks. Phys. Rev. A. 89, 042307 (2014)

    Article  ADS  Google Scholar 

  27. M. Zeng, E.H. Yong, Discrete-Time Quantum walk with phase disorder: Localization and entanglement entropy. Sci. Rep. 7, 12024 (2017)

    Article  ADS  Google Scholar 

  28. M.A. Nielsen, I.L. Chuang. Quantum computation and quantum information (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  29. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A. 53, 2046 (1996)

    Article  ADS  Google Scholar 

  30. A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gábris, P.J. Mosley, E. Andersson, I. Jex, Ch. Silberhorn, Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    Article  ADS  Google Scholar 

  31. A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gábris, I. Jex, Ch. Silberhorn, Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)

    Article  ADS  Google Scholar 

  32. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, P. Mataloni, Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics. 7, 322 (2013)

    Article  ADS  Google Scholar 

  33. P. Zhang, B. Liu, R. Liu, H. Li, F. Li, G. Guo, Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons. Phys. Rev. A. 81, 052322 (2010)

    Article  ADS  Google Scholar 

  34. S.K. Goyal, F.S. Roux, A. Forbes, T. Konrad, Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110, 263602 (2013)

    Article  ADS  Google Scholar 

  35. F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. De Lisio, F. Sciarrino, E. Santamato, R.W. Boyd, L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015)

    Article  ADS  Google Scholar 

  36. L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)

    Article  ADS  Google Scholar 

  37. F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, P. Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017)

    Article  ADS  Google Scholar 

  38. B. Do, M.L. Stohler, S. Balasubramanian, D.S. Elliott, C. Eash, E. Fischbach, M.A. Fischbach, A. Mills, B. Zwickl, Experimental realization of a quantum quincunx by use of linear optical elements. Opt. Soc. Am. B. 22, 020499 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Peres. Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, New York, 2002)

    Book  MATH  Google Scholar 

  40. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. C.M. Chandrashekar, Disorder induced localization and enhancement of entanglement in one- and two-dimensional quantum walks. arXiv:1212.5984 (2013)

Download references

Acknowledgments

We thank F. Cardano for kindly enlightening some experimental aspects mentioned here and also J. Longo for her careful reading and suggestions to improve the presentation of the manuscript.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgard P. M. Amorim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orthey, A.C., Amorim, E.P.M. Weak Disorder Enhancing the Production of Entanglement in Quantum Walks. Braz J Phys 49, 595–604 (2019). https://doi.org/10.1007/s13538-019-00685-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00685-2

Keywords

Navigation